Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
spark
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
cs525-sp18-g07
spark
Commits
2404d8e5
Commit
2404d8e5
authored
8 years ago
by
Yin Huai
Browse files
Options
Downloads
Patches
Plain Diff
Revert "[SPARK-18990][SQL] make DatasetBenchmark fairer for Dataset"
This reverts commit
a05cc425
.
parent
a05cc425
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
sql/core/src/test/scala/org/apache/spark/sql/DatasetBenchmark.scala
+33
-42
33 additions, 42 deletions
...rc/test/scala/org/apache/spark/sql/DatasetBenchmark.scala
with
33 additions
and
42 deletions
sql/core/src/test/scala/org/apache/spark/sql/DatasetBenchmark.scala
+
33
−
42
View file @
2404d8e5
...
...
@@ -17,6 +17,7 @@
package
org.apache.spark.sql
import
org.apache.spark.
{
SparkConf
,
SparkContext
}
import
org.apache.spark.sql.expressions.Aggregator
import
org.apache.spark.sql.expressions.scalalang.typed
import
org.apache.spark.sql.functions._
...
...
@@ -33,13 +34,11 @@ object DatasetBenchmark {
def
backToBackMap
(
spark
:
SparkSession
,
numRows
:
Long
,
numChains
:
Int
)
:
Benchmark
=
{
import
spark.implicits._
val
rdd
=
spark
.
sparkContext
.
range
(
0
,
numRows
)
val
ds
=
spark
.
range
(
0
,
numRows
)
val
df
=
ds
.
toDF
(
"l"
)
val
func
=
(
l
:
Long
)
=>
l
+
1
val
df
=
spark
.
range
(
1
,
numRows
).
select
(
$
"id"
.
as
(
"l"
),
$
"id"
.
cast
(
StringType
).
as
(
"s"
))
val
benchmark
=
new
Benchmark
(
"back-to-back map"
,
numRows
)
val
func
=
(
d
:
Data
)
=>
Data
(
d
.
l
+
1
,
d
.
s
)
val
rdd
=
spark
.
sparkContext
.
range
(
1
,
numRows
).
map
(
l
=>
Data
(
l
,
l
.
toString
))
benchmark
.
addCase
(
"RDD"
)
{
iter
=>
var
res
=
rdd
var
i
=
0
...
...
@@ -54,14 +53,14 @@ object DatasetBenchmark {
var
res
=
df
var
i
=
0
while
(
i
<
numChains
)
{
res
=
res
.
select
(
$
"l"
+
1
as
"l"
)
res
=
res
.
select
(
$
"l"
+
1
as
"l"
,
$
"s"
)
i
+=
1
}
res
.
queryExecution
.
toRdd
.
foreach
(
_
=>
Unit
)
}
benchmark
.
addCase
(
"Dataset"
)
{
iter
=>
var
res
=
d
s
.
as
[
Long
]
var
res
=
d
f
.
as
[
Data
]
var
i
=
0
while
(
i
<
numChains
)
{
res
=
res
.
map
(
func
)
...
...
@@ -76,14 +75,14 @@ object DatasetBenchmark {
def
backToBackFilter
(
spark
:
SparkSession
,
numRows
:
Long
,
numChains
:
Int
)
:
Benchmark
=
{
import
spark.implicits._
val
rdd
=
spark
.
sparkContext
.
range
(
0
,
numRows
)
val
ds
=
spark
.
range
(
0
,
numRows
)
val
df
=
ds
.
toDF
(
"l"
)
val
func
=
(
l
:
Long
,
i
:
Int
)
=>
l
%
(
100L
+
i
)
==
0L
val
funcs
=
0.
until
(
numChains
).
map
{
i
=>
(
l
:
Long
)
=>
func
(
l
,
i
)
}
val
df
=
spark
.
range
(
1
,
numRows
).
select
(
$
"id"
.
as
(
"l"
),
$
"id"
.
cast
(
StringType
).
as
(
"s"
))
val
benchmark
=
new
Benchmark
(
"back-to-back filter"
,
numRows
)
val
func
=
(
d
:
Data
,
i
:
Int
)
=>
d
.
l
%
(
100L
+
i
)
==
0L
val
funcs
=
0.
until
(
numChains
).
map
{
i
=>
(
d
:
Data
)
=>
func
(
d
,
i
)
}
val
rdd
=
spark
.
sparkContext
.
range
(
1
,
numRows
).
map
(
l
=>
Data
(
l
,
l
.
toString
))
benchmark
.
addCase
(
"RDD"
)
{
iter
=>
var
res
=
rdd
var
i
=
0
...
...
@@ -105,7 +104,7 @@ object DatasetBenchmark {
}
benchmark
.
addCase
(
"Dataset"
)
{
iter
=>
var
res
=
d
s
.
as
[
Long
]
var
res
=
d
f
.
as
[
Data
]
var
i
=
0
while
(
i
<
numChains
)
{
res
=
res
.
filter
(
funcs
(
i
))
...
...
@@ -134,29 +133,24 @@ object DatasetBenchmark {
def
aggregate
(
spark
:
SparkSession
,
numRows
:
Long
)
:
Benchmark
=
{
import
spark.implicits._
val
rdd
=
spark
.
sparkContext
.
range
(
0
,
numRows
)
val
ds
=
spark
.
range
(
0
,
numRows
)
val
df
=
ds
.
toDF
(
"l"
)
val
df
=
spark
.
range
(
1
,
numRows
).
select
(
$
"id"
.
as
(
"l"
),
$
"id"
.
cast
(
StringType
).
as
(
"s"
))
val
benchmark
=
new
Benchmark
(
"aggregate"
,
numRows
)
val
rdd
=
spark
.
sparkContext
.
range
(
1
,
numRows
).
map
(
l
=>
Data
(
l
,
l
.
toString
))
benchmark
.
addCase
(
"RDD sum"
)
{
iter
=>
rdd
.
map
(
l
=>
(
l
%
10
,
l
)).
reduceByKey
(
_
+
_
).
foreach
(
_
=>
Unit
)
rdd
.
aggregate
(
0L
)(
_
+
_
.
l
,
_
+
_
)
}
benchmark
.
addCase
(
"DataFrame sum"
)
{
iter
=>
df
.
groupBy
(
$
"l"
%
10
).
agg
(
sum
(
$
"l"
)).
queryExecution
.
toRdd
.
foreach
(
_
=>
Unit
)
df
.
select
(
sum
(
$
"l"
)).
queryExecution
.
toRdd
.
foreach
(
_
=>
Unit
)
}
benchmark
.
addCase
(
"Dataset sum using Aggregator"
)
{
iter
=>
val
result
=
ds
.
as
[
Long
].
groupByKey
(
_
%
10
).
agg
(
typed
.
sumLong
[
Long
](
identity
))
result
.
queryExecution
.
toRdd
.
foreach
(
_
=>
Unit
)
df
.
as
[
Data
].
select
(
typed
.
sumLong
((
d
:
Data
)
=>
d
.
l
)).
queryExecution
.
toRdd
.
foreach
(
_
=>
Unit
)
}
val
complexDs
=
df
.
select
(
$
"l"
,
$
"l"
.
cast
(
StringType
).
as
(
"s"
)).
as
[
Data
]
benchmark
.
addCase
(
"Dataset complex Aggregator"
)
{
iter
=>
val
result
=
complexDs
.
groupByKey
(
_
.
l
%
10
).
agg
(
ComplexAggregator
.
toColumn
)
result
.
queryExecution
.
toRdd
.
foreach
(
_
=>
Unit
)
df
.
as
[
Data
].
select
(
ComplexAggregator
.
toColumn
).
queryExecution
.
toRdd
.
foreach
(
_
=>
Unit
)
}
benchmark
...
...
@@ -176,39 +170,36 @@ object DatasetBenchmark {
val
benchmark3
=
aggregate
(
spark
,
numRows
)
/*
Java HotSpot(TM) 64-Bit Server VM 1.8.0_60-b27 on Mac OS X 10.12.1
Intel(R) Core(TM) i7-4960HQ CPU @ 2.60GHz
OpenJDK 64-Bit Server VM 1.8.0_91-b14 on Linux 3.10.0-327.18.2.el7.x86_64
Intel Xeon E3-12xx v2 (Ivy Bridge)
back-to-back map: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative
------------------------------------------------------------------------------------------------
RDD 3
963
/ 3
97
6 2
5.2
3
9.6
1.0X
DataFrame
826 / 834
121.1
8.3
4.8
X
Dataset
51
78 / 51
98
19.3
51
.8 0.
8
X
RDD 3
448
/ 3
64
6 2
9.0
3
4.5
1.0X
DataFrame
2647 / 3116
37.8
26.5
1.3
X
Dataset
4
78
1
/ 51
55
20.9
47
.8 0.
7
X
*/
benchmark
.
run
()
/*
Java HotSpot(TM) 64-Bit Server VM 1.8.0_60-b27 on Mac OS X 10.12.1
Intel(R) Core(TM) i7-4960HQ CPU @ 2.60GHz
OpenJDK 64-Bit Server VM 1.8.0_91-b14 on Linux 3.10.0-327.18.2.el7.x86_64
Intel Xeon E3-12xx v2 (Ivy Bridge)
back-to-back filter: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative
------------------------------------------------------------------------------------------------
RDD
533 / 587
187.6
5.3
1.0X
DataFrame
7
9 /
91
1
2
69
.0
0.
8
6
.8X
Dataset
550 / 559
181.7
5.5
1.0
X
RDD
1346 / 1618
74.3
13.5
1.0X
DataFrame
5
9 /
72
169
5.4
0.
6
22
.8X
Dataset
2777 / 2805
36.0
27.8
0.5
X
*/
benchmark2
.
run
()
/*
Java HotSpot(TM) 64-Bit Server VM 1.8.0_60-b27 on Mac OS X 10.12.1
Intel(R) Core(TM) i7-4960HQ CPU @ 2.60GHz
aggregate: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative
------------------------------------------------------------------------------------------------
RDD sum
2297 / 2440
43.5
23.0
1.0X
DataFrame sum
630
/
637
15
8
.7
6.3
3.6
X
Dataset sum using Aggregator
3129 / 3247
32.0
31.3
0.
7
X
Dataset complex Aggregator
12109 / 12142
8.3
121.1
0.
2
X
RDD sum
1913 / 1942
52.3
19.1
1.0X
DataFrame sum
46
/
61
2
15
7
.7
0.5
41.3
X
Dataset sum using Aggregator
4656 / 4758
21.5
46.6
0.
4
X
Dataset complex Aggregator
6636 / 7039
15.1
66.4
0.
3
X
*/
benchmark3
.
run
()
}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment