Skip to content
Snippets Groups Projects
Commit 1742c3ab authored by Sean Zhong's avatar Sean Zhong Committed by Josh Rosen
Browse files

[SPARK-17503][CORE] Fix memory leak in Memory store when unable to cache the whole RDD in memory

## What changes were proposed in this pull request?

   MemoryStore may throw OutOfMemoryError when trying to cache a super big RDD that cannot fit in memory.
   ```
   scala> sc.parallelize(1 to 1000000000, 100).map(x => new Array[Long](1000)).cache().count()

   java.lang.OutOfMemoryError: Java heap space
	at $line14.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$anonfun$1.apply(<console>:24)
	at $line14.$read$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$iw$$anonfun$1.apply(<console>:23)
	at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
	at scala.collection.Iterator$JoinIterator.next(Iterator.scala:232)
	at org.apache.spark.storage.memory.PartiallyUnrolledIterator.next(MemoryStore.scala:683)
	at org.apache.spark.InterruptibleIterator.next(InterruptibleIterator.scala:43)
	at org.apache.spark.util.Utils$.getIteratorSize(Utils.scala:1684)
	at org.apache.spark.rdd.RDD$$anonfun$count$1.apply(RDD.scala:1134)
	at org.apache.spark.rdd.RDD$$anonfun$count$1.apply(RDD.scala:1134)
	at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1915)
	at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1915)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
	at org.apache.spark.scheduler.Task.run(Task.scala:86)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
	at java.lang.Thread.run(Thread.java:745)
   ```

Spark MemoryStore uses SizeTrackingVector as a temporary unrolling buffer to store all input values that it has read so far before transferring the values to storage memory cache. The problem is that when the input RDD is too big for caching in memory, the temporary unrolling memory SizeTrackingVector is not garbage collected in time. As SizeTrackingVector can occupy all available storage memory, it may cause the executor JVM to run out of memory quickly.

More info can be found at https://issues.apache.org/jira/browse/SPARK-17503

## How was this patch tested?

Unit test and manual test.

### Before change

Heap memory consumption
<img width="702" alt="screen shot 2016-09-12 at 4 16 15 pm" src="https://cloud.githubusercontent.com/assets/2595532/18429524/60d73a26-7906-11e6-9768-6f286f5c58c8.png">

Heap dump
<img width="1402" alt="screen shot 2016-09-12 at 4 34 19 pm" src="https://cloud.githubusercontent.com/assets/2595532/18429577/cbc1ef20-7906-11e6-847b-b5903f450b3b.png">

### After change

Heap memory consumption
<img width="706" alt="screen shot 2016-09-12 at 4 29 10 pm" src="https://cloud.githubusercontent.com/assets/2595532/18429503/4abe9342-7906-11e6-844a-b2f815072624.png">

Author: Sean Zhong <seanzhong@databricks.com>

Closes #15056 from clockfly/memory_store_leak.
parent 8087ecf8
No related branches found
No related tags found
No related merge requests found
Loading
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment