-
- Downloads
[SPARK-20214][ML] Make sure converted csc matrix has sorted indices
## What changes were proposed in this pull request? `_convert_to_vector` converts a scipy sparse matrix to csc matrix for initializing `SparseVector`. However, it doesn't guarantee the converted csc matrix has sorted indices and so a failure happens when you do something like that: from scipy.sparse import lil_matrix lil = lil_matrix((4, 1)) lil[1, 0] = 1 lil[3, 0] = 2 _convert_to_vector(lil.todok()) File "/home/jenkins/workspace/python/pyspark/mllib/linalg/__init__.py", line 78, in _convert_to_vector return SparseVector(l.shape[0], csc.indices, csc.data) File "/home/jenkins/workspace/python/pyspark/mllib/linalg/__init__.py", line 556, in __init__ % (self.indices[i], self.indices[i + 1])) TypeError: Indices 3 and 1 are not strictly increasing A simple test can confirm that `dok_matrix.tocsc()` won't guarantee sorted indices: >>> from scipy.sparse import lil_matrix >>> lil = lil_matrix((4, 1)) >>> lil[1, 0] = 1 >>> lil[3, 0] = 2 >>> dok = lil.todok() >>> csc = dok.tocsc() >>> csc.has_sorted_indices 0 >>> csc.indices array([3, 1], dtype=int32) I checked the source codes of scipy. The only way to guarantee it is `csc_matrix.tocsr()` and `csr_matrix.tocsc()`. ## How was this patch tested? Existing tests. Please review http://spark.apache.org/contributing.html before opening a pull request. Author: Liang-Chi Hsieh <viirya@gmail.com> Closes #17532 from viirya/make-sure-sorted-indices.
Please register or sign in to comment