Skip to content
Snippets Groups Projects
Commit 0b6b0176 authored by Feynman Liang's avatar Feynman Liang Committed by Xiangrui Meng
Browse files

[SPARK-9898] [MLLIB] Prefix Span user guide

Adds user guide for `PrefixSpan`, including Scala and Java example code.

mengxr zhangjiajin

Author: Feynman Liang <fliang@databricks.com>

Closes #8253 from feynmanliang/SPARK-9898.
parent 18523c13
No related branches found
No related tags found
No related merge requests found
......@@ -96,3 +96,99 @@ for (FPGrowth.FreqItemset<String> itemset: model.freqItemsets().toJavaRDD().coll
</div>
</div>
## PrefixSpan
PrefixSpan is a sequential pattern mining algorithm described in
[Pei et al., Mining Sequential Patterns by Pattern-Growth: The
PrefixSpan Approach](http://dx.doi.org/10.1109%2FTKDE.2004.77). We refer
the reader to the referenced paper for formalizing the sequential
pattern mining problem.
MLlib's PrefixSpan implementation takes the following parameters:
* `minSupport`: the minimum support required to be considered a frequent
sequential pattern.
* `maxPatternLength`: the maximum length of a frequent sequential
pattern. Any frequent pattern exceeding this length will not be
included in the results.
* `maxLocalProjDBSize`: the maximum number of items allowed in a
prefix-projected database before local iterative processing of the
projected databse begins. This parameter should be tuned with respect
to the size of your executors.
**Examples**
The following example illustrates PrefixSpan running on the sequences
(using same notation as Pei et al):
~~~
<(12)3>
<1(32)(12)>
<(12)5>
<6>
~~~
<div class="codetabs">
<div data-lang="scala" markdown="1">
[`PrefixSpan`](api/scala/index.html#org.apache.spark.mllib.fpm.PrefixSpan) implements the
PrefixSpan algorithm.
Calling `PrefixSpan.run` returns a
[`PrefixSpanModel`](api/scala/index.html#org.apache.spark.mllib.fpm.PrefixSpanModel)
that stores the frequent sequences with their frequencies.
{% highlight scala %}
import org.apache.spark.mllib.fpm.PrefixSpan
val sequences = sc.parallelize(Seq(
Array(Array(1, 2), Array(3)),
Array(Array(1), Array(3, 2), Array(1, 2)),
Array(Array(1, 2), Array(5)),
Array(Array(6))
), 2).cache()
val prefixSpan = new PrefixSpan()
.setMinSupport(0.5)
.setMaxPatternLength(5)
val model = prefixSpan.run(sequences)
model.freqSequences.collect().foreach { freqSequence =>
println(
freqSequence.sequence.map(_.mkString("[", ", ", "]")).mkString("[", ", ", "]") + ", " + freqSequence.freq)
}
{% endhighlight %}
</div>
<div data-lang="java" markdown="1">
[`PrefixSpan`](api/java/org/apache/spark/mllib/fpm/PrefixSpan.html) implements the
PrefixSpan algorithm.
Calling `PrefixSpan.run` returns a
[`PrefixSpanModel`](api/java/org/apache/spark/mllib/fpm/PrefixSpanModel.html)
that stores the frequent sequences with their frequencies.
{% highlight java %}
import java.util.Arrays;
import java.util.List;
import org.apache.spark.mllib.fpm.PrefixSpan;
import org.apache.spark.mllib.fpm.PrefixSpanModel;
JavaRDD<List<List<Integer>>> sequences = sc.parallelize(Arrays.asList(
Arrays.asList(Arrays.asList(1, 2), Arrays.asList(3)),
Arrays.asList(Arrays.asList(1), Arrays.asList(3, 2), Arrays.asList(1, 2)),
Arrays.asList(Arrays.asList(1, 2), Arrays.asList(5)),
Arrays.asList(Arrays.asList(6))
), 2);
PrefixSpan prefixSpan = new PrefixSpan()
.setMinSupport(0.5)
.setMaxPatternLength(5);
PrefixSpanModel<Integer> model = prefixSpan.run(sequences);
for (PrefixSpan.FreqSequence<Integer> freqSeq: model.freqSequences().toJavaRDD().collect()) {
System.out.println(freqSeq.javaSequence() + ", " + freqSeq.freq());
}
{% endhighlight %}
</div>
</div>
......@@ -48,6 +48,7 @@ This lists functionality included in `spark.mllib`, the main MLlib API.
* [Feature extraction and transformation](mllib-feature-extraction.html)
* [Frequent pattern mining](mllib-frequent-pattern-mining.html)
* [FP-growth](mllib-frequent-pattern-mining.html#fp-growth)
* [PrefixSpan](mllib-frequent-pattern-mining.html#prefix-span)
* [Evaluation Metrics](mllib-evaluation-metrics.html)
* [Optimization (developer)](mllib-optimization.html)
* [stochastic gradient descent](mllib-optimization.html#stochastic-gradient-descent-sgd)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment