Skip to content
Snippets Groups Projects
Commit 0b10662f authored by BenFradet's avatar BenFradet Committed by Xiangrui Meng
Browse files

[SPARK-8575] [SQL] Deprecate callUDF in favor of udf

Follow up of [SPARK-8356](https://issues.apache.org/jira/browse/SPARK-8356) and #6902.
Removes the unit test for the now deprecated ```callUdf```
Unit test in SQLQuerySuite now uses ```udf``` instead of ```callUDF```
Replaced ```callUDF``` by ```udf``` where possible in mllib

Author: BenFradet <benjamin.fradet@gmail.com>

Closes #6993 from BenFradet/SPARK-8575 and squashes the following commits:

26f5a7a [BenFradet] 2 spaces instead of 1
1ddb452 [BenFradet] renamed initUDF in order to be consistent in OneVsRest
48ca15e [BenFradet] used vector type tag for udf call in VectorIndexer
0ebd0da [BenFradet] replace the now deprecated callUDF by udf in VectorIndexer
8013409 [BenFradet] replaced the now deprecated callUDF by udf in Predictor
94345b5 [BenFradet] unifomized udf calls in ProbabilisticClassifier
1305492 [BenFradet] uniformized udf calls in Classifier
a672228 [BenFradet] uniformized udf calls in OneVsRest
49e4904 [BenFradet] Revert "removal of the unit test for the now deprecated callUdf"
bbdeaf3 [BenFradet] fixed syntax for init udf in OneVsRest
fe2a10b [BenFradet] callUDF => udf in ProbabilisticClassifier
0ea30b3 [BenFradet] callUDF => udf in Classifier where possible
197ec82 [BenFradet] callUDF => udf in OneVsRest
84d6780 [BenFradet] modified unit test in SQLQuerySuite to use udf instead of callUDF
477709f [BenFradet] removal of the unit test for the now deprecated callUdf
parent dfde31da
No related branches found
No related tags found
No related merge requests found
......@@ -122,9 +122,7 @@ abstract class Predictor[
*/
protected def extractLabeledPoints(dataset: DataFrame): RDD[LabeledPoint] = {
dataset.select($(labelCol), $(featuresCol))
.map { case Row(label: Double, features: Vector) =>
LabeledPoint(label, features)
}
.map { case Row(label: Double, features: Vector) => LabeledPoint(label, features) }
}
}
......@@ -171,7 +169,10 @@ abstract class PredictionModel[FeaturesType, M <: PredictionModel[FeaturesType,
override def transform(dataset: DataFrame): DataFrame = {
transformSchema(dataset.schema, logging = true)
if ($(predictionCol).nonEmpty) {
dataset.withColumn($(predictionCol), callUDF(predict _, DoubleType, col($(featuresCol))))
val predictUDF = udf { (features: Any) =>
predict(features.asInstanceOf[FeaturesType])
}
dataset.withColumn($(predictionCol), predictUDF(col($(featuresCol))))
} else {
this.logWarning(s"$uid: Predictor.transform() was called as NOOP" +
" since no output columns were set.")
......
......@@ -102,15 +102,20 @@ abstract class ClassificationModel[FeaturesType, M <: ClassificationModel[Featur
var outputData = dataset
var numColsOutput = 0
if (getRawPredictionCol != "") {
outputData = outputData.withColumn(getRawPredictionCol,
callUDF(predictRaw _, new VectorUDT, col(getFeaturesCol)))
val predictRawUDF = udf { (features: Any) =>
predictRaw(features.asInstanceOf[FeaturesType])
}
outputData = outputData.withColumn(getRawPredictionCol, predictRawUDF(col(getFeaturesCol)))
numColsOutput += 1
}
if (getPredictionCol != "") {
val predUDF = if (getRawPredictionCol != "") {
callUDF(raw2prediction _, DoubleType, col(getRawPredictionCol))
udf(raw2prediction _).apply(col(getRawPredictionCol))
} else {
callUDF(predict _, DoubleType, col(getFeaturesCol))
val predictUDF = udf { (features: Any) =>
predict(features.asInstanceOf[FeaturesType])
}
predictUDF(col(getFeaturesCol))
}
outputData = outputData.withColumn(getPredictionCol, predUDF)
numColsOutput += 1
......
......@@ -88,9 +88,9 @@ final class OneVsRestModel private[ml] (
// add an accumulator column to store predictions of all the models
val accColName = "mbc$acc" + UUID.randomUUID().toString
val init: () => Map[Int, Double] = () => {Map()}
val initUDF = udf { () => Map[Int, Double]() }
val mapType = MapType(IntegerType, DoubleType, valueContainsNull = false)
val newDataset = dataset.withColumn(accColName, callUDF(init, mapType))
val newDataset = dataset.withColumn(accColName, initUDF())
// persist if underlying dataset is not persistent.
val handlePersistence = dataset.rdd.getStorageLevel == StorageLevel.NONE
......@@ -106,13 +106,12 @@ final class OneVsRestModel private[ml] (
// add temporary column to store intermediate scores and update
val tmpColName = "mbc$tmp" + UUID.randomUUID().toString
val update: (Map[Int, Double], Vector) => Map[Int, Double] =
(predictions: Map[Int, Double], prediction: Vector) => {
predictions + ((index, prediction(1)))
}
val updateUdf = callUDF(update, mapType, col(accColName), col(rawPredictionCol))
val updateUDF = udf { (predictions: Map[Int, Double], prediction: Vector) =>
predictions + ((index, prediction(1)))
}
val transformedDataset = model.transform(df).select(columns : _*)
val updatedDataset = transformedDataset.withColumn(tmpColName, updateUdf)
val updatedDataset = transformedDataset
.withColumn(tmpColName, updateUDF(col(accColName), col(rawPredictionCol)))
val newColumns = origCols ++ List(col(tmpColName))
// switch out the intermediate column with the accumulator column
......@@ -124,13 +123,13 @@ final class OneVsRestModel private[ml] (
}
// output the index of the classifier with highest confidence as prediction
val label: Map[Int, Double] => Double = (predictions: Map[Int, Double]) => {
val labelUDF = udf { (predictions: Map[Int, Double]) =>
predictions.maxBy(_._2)._1.toDouble
}
// output label and label metadata as prediction
val labelUdf = callUDF(label, DoubleType, col(accColName))
aggregatedDataset.withColumn($(predictionCol), labelUdf.as($(predictionCol), labelMetadata))
aggregatedDataset
.withColumn($(predictionCol), labelUDF(col(accColName)).as($(predictionCol), labelMetadata))
.drop(accColName)
}
......@@ -185,17 +184,15 @@ final class OneVsRest(override val uid: String)
// create k columns, one for each binary classifier.
val models = Range(0, numClasses).par.map { index =>
val label: Double => Double = (label: Double) => {
val labelUDF = udf { (label: Double) =>
if (label.toInt == index) 1.0 else 0.0
}
// generate new label metadata for the binary problem.
// TODO: use when ... otherwise after SPARK-7321 is merged
val labelUDF = callUDF(label, DoubleType, col($(labelCol)))
val newLabelMeta = BinaryAttribute.defaultAttr.withName("label").toMetadata()
val labelColName = "mc2b$" + index
val labelUDFWithNewMeta = labelUDF.as(labelColName, newLabelMeta)
val labelUDFWithNewMeta = labelUDF(col($(labelCol))).as(labelColName, newLabelMeta)
val trainingDataset = multiclassLabeled.withColumn(labelColName, labelUDFWithNewMeta)
val classifier = getClassifier
classifier.fit(trainingDataset, classifier.labelCol -> labelColName)
......
......@@ -98,26 +98,34 @@ private[spark] abstract class ProbabilisticClassificationModel[
var outputData = dataset
var numColsOutput = 0
if ($(rawPredictionCol).nonEmpty) {
outputData = outputData.withColumn(getRawPredictionCol,
callUDF(predictRaw _, new VectorUDT, col(getFeaturesCol)))
val predictRawUDF = udf { (features: Any) =>
predictRaw(features.asInstanceOf[FeaturesType])
}
outputData = outputData.withColumn(getRawPredictionCol, predictRawUDF(col(getFeaturesCol)))
numColsOutput += 1
}
if ($(probabilityCol).nonEmpty) {
val probUDF = if ($(rawPredictionCol).nonEmpty) {
callUDF(raw2probability _, new VectorUDT, col($(rawPredictionCol)))
udf(raw2probability _).apply(col($(rawPredictionCol)))
} else {
callUDF(predictProbability _, new VectorUDT, col($(featuresCol)))
val probabilityUDF = udf { (features: Any) =>
predictProbability(features.asInstanceOf[FeaturesType])
}
probabilityUDF(col($(featuresCol)))
}
outputData = outputData.withColumn($(probabilityCol), probUDF)
numColsOutput += 1
}
if ($(predictionCol).nonEmpty) {
val predUDF = if ($(rawPredictionCol).nonEmpty) {
callUDF(raw2prediction _, DoubleType, col($(rawPredictionCol)))
udf(raw2prediction _).apply(col($(rawPredictionCol)))
} else if ($(probabilityCol).nonEmpty) {
callUDF(probability2prediction _, DoubleType, col($(probabilityCol)))
udf(probability2prediction _).apply(col($(probabilityCol)))
} else {
callUDF(predict _, DoubleType, col($(featuresCol)))
val predictUDF = udf { (features: Any) =>
predict(features.asInstanceOf[FeaturesType])
}
predictUDF(col($(featuresCol)))
}
outputData = outputData.withColumn($(predictionCol), predUDF)
numColsOutput += 1
......
......@@ -30,7 +30,7 @@ import org.apache.spark.ml.param.shared._
import org.apache.spark.ml.util.{Identifiable, SchemaUtils}
import org.apache.spark.mllib.linalg.{DenseVector, SparseVector, Vector, VectorUDT}
import org.apache.spark.sql.{DataFrame, Row}
import org.apache.spark.sql.functions.callUDF
import org.apache.spark.sql.functions.udf
import org.apache.spark.sql.types.{StructField, StructType}
import org.apache.spark.util.collection.OpenHashSet
......@@ -339,7 +339,8 @@ class VectorIndexerModel private[ml] (
override def transform(dataset: DataFrame): DataFrame = {
transformSchema(dataset.schema, logging = true)
val newField = prepOutputField(dataset.schema)
val newCol = callUDF(transformFunc, new VectorUDT, dataset($(inputCol)))
val transformUDF = udf { (vector: Vector) => transformFunc(vector) }
val newCol = transformUDF(dataset($(inputCol)))
dataset.withColumn($(outputCol), newCol.as($(outputCol), newField.metadata))
}
......
......@@ -137,13 +137,12 @@ class SQLQuerySuite extends QueryTest with BeforeAndAfterAll with SQLTestUtils {
test("SPARK-7158 collect and take return different results") {
import java.util.UUID
import org.apache.spark.sql.types._
val df = Seq(Tuple1(1), Tuple1(2), Tuple1(3)).toDF("index")
// we except the id is materialized once
def id: () => String = () => { UUID.randomUUID().toString() }
val idUdf = udf(() => UUID.randomUUID().toString)
val dfWithId = df.withColumn("id", callUDF(id, StringType))
val dfWithId = df.withColumn("id", idUdf())
// Make a new DataFrame (actually the same reference to the old one)
val cached = dfWithId.cache()
// Trigger the cache
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment