Skip to content
Snippets Groups Projects
Commit 05e6d5b4 authored by Xusen Yin's avatar Xusen Yin
Browse files

Added GradientDescentSuite

parent a7210728
No related branches found
No related tags found
No related merge requests found
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.mllib.optimization
import scala.util.Random
import scala.collection.JavaConversions._
import org.scalatest.BeforeAndAfterAll
import org.scalatest.FunSuite
import org.scalatest.matchers.ShouldMatchers
import org.apache.spark.SparkContext
import org.apache.spark.mllib.regression._
object GradientDescentSuite {
def generateLogisticInputAsList(
offset: Double,
scale: Double,
nPoints: Int,
seed: Int): java.util.List[LabeledPoint] = {
seqAsJavaList(generateGDInput(offset, scale, nPoints, seed))
}
// Generate input of the form Y = logistic(offset + scale * X)
def generateGDInput(
offset: Double,
scale: Double,
nPoints: Int,
seed: Int): Seq[LabeledPoint] = {
val rnd = new Random(seed)
val x1 = Array.fill[Double](nPoints)(rnd.nextGaussian())
val unifRand = new scala.util.Random(45)
val rLogis = (0 until nPoints).map { i =>
val u = unifRand.nextDouble()
math.log(u) - math.log(1.0-u)
}
val y: Seq[Int] = (0 until nPoints).map { i =>
val yVal = offset + scale * x1(i) + rLogis(i)
if (yVal > 0) 1 else 0
}
val testData = (0 until nPoints).map(i => LabeledPoint(y(i), Array(x1(i))))
testData
}
}
class GradientDescentSuite extends FunSuite with BeforeAndAfterAll with ShouldMatchers {
@transient private var sc: SparkContext = _
override def beforeAll() {
sc = new SparkContext("local", "test")
}
override def afterAll() {
sc.stop()
System.clearProperty("spark.driver.port")
}
test("Assert the loss is decreasing.") {
val nPoints = 10000
val A = 2.0
val B = -1.5
val initialB = -1.0
val initialWeights = Array(initialB)
val gradient = new LogisticGradient()
val updater = new SimpleUpdater()
val stepSize = 1.0
val numIterations = 10
val regParam = 0
val miniBatchFrac = 1.0
// Add a extra variable consisting of all 1.0's for the intercept.
val testData = GradientDescentSuite.generateGDInput(A, B, nPoints, 42)
val data = testData.map { case LabeledPoint(label, features) =>
label -> Array(1.0, features: _*)
}
val dataRDD = sc.parallelize(data, 2).cache()
val initialWeightsWithIntercept = Array(1.0, initialWeights: _*)
val (_, loss) = GradientDescent.runMiniBatchSGD(
dataRDD,
gradient,
updater,
stepSize,
numIterations,
regParam,
miniBatchFrac,
initialWeightsWithIntercept)
assert(loss.last - loss.head < 0, "loss isn't decreasing.")
val lossDiff = loss.init.zip(loss.tail).map { case (lhs, rhs) => lhs - rhs }
assert(lossDiff.count(_ > 0).toDouble / lossDiff.size > 0.8)
}
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment