-
Joseph K. Bradley authored
Added feature transformer subsection to spark.ml guide, with HashingTF and Tokenizer. Added JavaHashingTFSuite to test Java examples in new guide. I've run Scala, Python examples in the Spark/PySpark shells. I ran the Java examples via the test suite (with small modifications for printing). CC: mengxr Author: Joseph K. Bradley <joseph@databricks.com> Closes #6093 from jkbradley/hashingtf-guide and squashes the following commits: d5d213f [Joseph K. Bradley] small fix dd6e91a [Joseph K. Bradley] fixes from code review of user guide 33c3ff9 [Joseph K. Bradley] small fix bc6058c [Joseph K. Bradley] fix link 361a174 [Joseph K. Bradley] Added subsection for feature transformers to spark.ml guide, with HashingTF and Tokenizer. Added JavaHashingTFSuite to test Java examples in new guide
Joseph K. Bradley authoredAdded feature transformer subsection to spark.ml guide, with HashingTF and Tokenizer. Added JavaHashingTFSuite to test Java examples in new guide. I've run Scala, Python examples in the Spark/PySpark shells. I ran the Java examples via the test suite (with small modifications for printing). CC: mengxr Author: Joseph K. Bradley <joseph@databricks.com> Closes #6093 from jkbradley/hashingtf-guide and squashes the following commits: d5d213f [Joseph K. Bradley] small fix dd6e91a [Joseph K. Bradley] fixes from code review of user guide 33c3ff9 [Joseph K. Bradley] small fix bc6058c [Joseph K. Bradley] fix link 361a174 [Joseph K. Bradley] Added subsection for feature transformers to spark.ml guide, with HashingTF and Tokenizer. Added JavaHashingTFSuite to test Java examples in new guide
layout: global
title: Feature Extraction, Transformation, and Selection - SparkML
displayTitle: <a href="ml-guide.html">ML</a> - Features
This section covers algorithms for working with features, roughly divided into these groups:
- Extraction: Extracting features from "raw" data
- Transformation: Scaling, converting, or modifying features
- Selection: Selecting a subset from a larger set of features
Table of Contents
- This will become a table of contents (this text will be scraped). {:toc}
Feature Extractors
Hashing Term-Frequency (HashingTF)
HashingTF
is a Transformer
which takes sets of terms (e.g., String
terms can be sets of words) and converts those sets into fixed-length feature vectors.
The algorithm combines Term Frequency (TF) counts with the hashing trick for dimensionality reduction. Please refer to the MLlib user guide on TF-IDF for more details on Term-Frequency.
HashingTF is implemented in
HashingTF.
In the following code segment, we start with a set of sentences. We split each sentence into words using Tokenizer
. For each sentence (bag of words), we hash it into a feature vector. This feature vector could then be passed to a learning algorithm.
val sentenceDataFrame = sqlContext.createDataFrame(Seq( (0, "Hi I heard about Spark"), (0, "I wish Java could use case classes"), (1, "Logistic regression models are neat") )).toDF("label", "sentence") val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words") val wordsDataFrame = tokenizer.transform(sentenceDataFrame) val hashingTF = new HashingTF().setInputCol("words").setOutputCol("features").setNumFeatures(20) val featurized = hashingTF.transform(wordsDataFrame) featurized.select("features", "label").take(3).foreach(println) {% endhighlight %}
import org.apache.spark.api.java.JavaRDD; import org.apache.spark.ml.feature.HashingTF; import org.apache.spark.ml.feature.Tokenizer; import org.apache.spark.mllib.linalg.Vector; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.Row; import org.apache.spark.sql.RowFactory; import org.apache.spark.sql.types.DataTypes; import org.apache.spark.sql.types.Metadata; import org.apache.spark.sql.types.StructField; import org.apache.spark.sql.types.StructType;
JavaRDD jrdd = jsc.parallelize(Lists.newArrayList( RowFactory.create(0, "Hi I heard about Spark"), RowFactory.create(0, "I wish Java could use case classes"), RowFactory.create(1, "Logistic regression models are neat") )); StructType schema = new StructType(new StructField[]{ new StructField("label", DataTypes.DoubleType, false, Metadata.empty()), new StructField("sentence", DataTypes.StringType, false, Metadata.empty()) }); DataFrame sentenceDataFrame = sqlContext.createDataFrame(jrdd, schema); Tokenizer tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words"); DataFrame wordsDataFrame = tokenizer.transform(sentenceDataFrame); int numFeatures = 20; HashingTF hashingTF = new HashingTF() .setInputCol("words") .setOutputCol("features") .setNumFeatures(numFeatures); DataFrame featurized = hashingTF.transform(wordsDataFrame); for (Row r : featurized.select("features", "label").take(3)) { Vector features = r.getAs(0); Double label = r.getDouble(1); System.out.println(features); } {% endhighlight %}
sentenceDataFrame = sqlContext.createDataFrame([ (0, "Hi I heard about Spark"), (0, "I wish Java could use case classes"), (1, "Logistic regression models are neat") ], ["label", "sentence"]) tokenizer = Tokenizer(inputCol="sentence", outputCol="words") wordsDataFrame = tokenizer.transform(sentenceDataFrame) hashingTF = HashingTF(inputCol="words", outputCol="features", numFeatures=20) featurized = hashingTF.transform(wordsDataFrame) for features_label in featurized.select("features", "label").take(3): print features_label {% endhighlight %}
Feature Transformers
Tokenizer
Tokenization is the process of taking text (such as a sentence) and breaking it into individual terms (usually words). A simple Tokenizer class provides this functionality. The example below shows how to split sentences into sequences of words.
Note: A more advanced tokenizer is provided via RegexTokenizer.
val sentenceDataFrame = sqlContext.createDataFrame(Seq( (0, "Hi I heard about Spark"), (0, "I wish Java could use case classes"), (1, "Logistic regression models are neat") )).toDF("label", "sentence") val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words") val wordsDataFrame = tokenizer.transform(sentenceDataFrame) wordsDataFrame.select("words", "label").take(3).foreach(println) {% endhighlight %}
import org.apache.spark.api.java.JavaRDD; import org.apache.spark.ml.feature.Tokenizer; import org.apache.spark.mllib.linalg.Vector; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.Row; import org.apache.spark.sql.RowFactory; import org.apache.spark.sql.types.DataTypes; import org.apache.spark.sql.types.Metadata; import org.apache.spark.sql.types.StructField; import org.apache.spark.sql.types.StructType;
JavaRDD jrdd = jsc.parallelize(Lists.newArrayList( RowFactory.create(0, "Hi I heard about Spark"), RowFactory.create(0, "I wish Java could use case classes"), RowFactory.create(1, "Logistic regression models are neat") )); StructType schema = new StructType(new StructField[]{ new StructField("label", DataTypes.DoubleType, false, Metadata.empty()), new StructField("sentence", DataTypes.StringType, false, Metadata.empty()) }); DataFrame sentenceDataFrame = sqlContext.createDataFrame(jrdd, schema); Tokenizer tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words"); DataFrame wordsDataFrame = tokenizer.transform(sentenceDataFrame); for (Row r : wordsDataFrame.select("words", "label").take(3)) { java.util.List words = r.getList(0); for (String word : words) System.out.print(word + " "); System.out.println(); } {% endhighlight %}
sentenceDataFrame = sqlContext.createDataFrame([ (0, "Hi I heard about Spark"), (0, "I wish Java could use case classes"), (1, "Logistic regression models are neat") ], ["label", "sentence"]) tokenizer = Tokenizer(inputCol="sentence", outputCol="words") wordsDataFrame = tokenizer.transform(sentenceDataFrame) for words_label in wordsDataFrame.select("words", "label").take(3): print words_label {% endhighlight %}