-
Yanbo Liang authored
## What changes were proposed in this pull request? Add Scala/Java/Python examples for ```GeneralizedLinearRegression```. ## How was this patch tested? They are examples and have been tested offline. Author: Yanbo Liang <ybliang8@gmail.com> Closes #12754 from yanboliang/spark-14979.
Yanbo Liang authored## What changes were proposed in this pull request? Add Scala/Java/Python examples for ```GeneralizedLinearRegression```. ## How was this patch tested? They are examples and have been tested offline. Author: Yanbo Liang <ybliang8@gmail.com> Closes #12754 from yanboliang/spark-14979.
generalized_linear_regression_example.py 2.45 KiB
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from __future__ import print_function
from pyspark.sql import SparkSession
# $example on$
from pyspark.ml.regression import GeneralizedLinearRegression
# $example off$
"""
An example demonstrating generalized linear regression.
Run with:
bin/spark-submit examples/src/main/python/ml/generalized_linear_regression_example.py
"""
if __name__ == "__main__":
spark = SparkSession\
.builder\
.appName("GeneralizedLinearRegressionExample")\
.getOrCreate()
# $example on$
# Load training data
dataset = spark.read.format("libsvm")\
.load("data/mllib/sample_linear_regression_data.txt")
glr = GeneralizedLinearRegression(family="gaussian", link="identity", maxIter=10, regParam=0.3)
# Fit the model
model = glr.fit(dataset)
# Print the coefficients and intercept for generalized linear regression model
print("Coefficients: " + str(model.coefficients))
print("Intercept: " + str(model.intercept))
# Summarize the model over the training set and print out some metrics
summary = model.summary
print("Coefficient Standard Errors: " + str(summary.coefficientStandardErrors))
print("T Values: " + str(summary.tValues))
print("P Values: " + str(summary.pValues))
print("Dispersion: " + str(summary.dispersion))
print("Null Deviance: " + str(summary.nullDeviance))
print("Residual Degree Of Freedom Null: " + str(summary.residualDegreeOfFreedomNull))
print("Deviance: " + str(summary.deviance))
print("Residual Degree Of Freedom: " + str(summary.residualDegreeOfFreedom))
print("AIC: " + str(summary.aic))
print("Deviance Residuals: ")
summary.residuals().show()
# $example off$
spark.stop()