-
Dongjoon Hyun authored
[SPARK-15134][EXAMPLE] Indent SparkSession builder patterns and update binary_classification_metrics_example.py ## What changes were proposed in this pull request? This issue addresses the comments in SPARK-15031 and also fix java-linter errors. - Use multiline format in SparkSession builder patterns. - Update `binary_classification_metrics_example.py` to use `SparkSession`. - Fix Java Linter errors (in SPARK-13745, SPARK-15031, and so far) ## How was this patch tested? After passing the Jenkins tests and run `dev/lint-java` manually. Author: Dongjoon Hyun <dongjoon@apache.org> Closes #12911 from dongjoon-hyun/SPARK-15134.
Dongjoon Hyun authored[SPARK-15134][EXAMPLE] Indent SparkSession builder patterns and update binary_classification_metrics_example.py ## What changes were proposed in this pull request? This issue addresses the comments in SPARK-15031 and also fix java-linter errors. - Use multiline format in SparkSession builder patterns. - Update `binary_classification_metrics_example.py` to use `SparkSession`. - Fix Java Linter errors (in SPARK-13745, SPARK-15031, and so far) ## How was this patch tested? After passing the Jenkins tests and run `dev/lint-java` manually. Author: Dongjoon Hyun <dongjoon@apache.org> Closes #12911 from dongjoon-hyun/SPARK-15134.
tf_idf_example.py 1.90 KiB
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from __future__ import print_function
# $example on$
from pyspark.ml.feature import HashingTF, IDF, Tokenizer
# $example off$
from pyspark.sql import SparkSession
if __name__ == "__main__":
spark = SparkSession\
.builder\
.appName("TfIdfExample")\
.getOrCreate()
# $example on$
sentenceData = spark.createDataFrame([
(0, "Hi I heard about Spark"),
(0, "I wish Java could use case classes"),
(1, "Logistic regression models are neat")
], ["label", "sentence"])
tokenizer = Tokenizer(inputCol="sentence", outputCol="words")
wordsData = tokenizer.transform(sentenceData)
hashingTF = HashingTF(inputCol="words", outputCol="rawFeatures", numFeatures=20)
featurizedData = hashingTF.transform(wordsData)
# alternatively, CountVectorizer can also be used to get term frequency vectors
idf = IDF(inputCol="rawFeatures", outputCol="features")
idfModel = idf.fit(featurizedData)
rescaledData = idfModel.transform(featurizedData)
for features_label in rescaledData.select("features", "label").take(3):
print(features_label)
# $example off$
spark.stop()