-
Nicholas Chammas authored
As described in [SPARK-2627](https://issues.apache.org/jira/browse/SPARK-2627), we'd like Python code to automatically be checked for PEP 8 compliance by Jenkins. This pull request aims to do that. Notes: * We may need to install [`pep8`](https://pypi.python.org/pypi/pep8) on the build server. * I'm expecting tests to fail now that PEP 8 compliance is being checked as part of the build. I'm fine with cleaning up any remaining PEP 8 violations as part of this pull request. * I did not understand why the RAT and scalastyle reports are saved to text files. I did the same for the PEP 8 check, but only so that the console output style can match those for the RAT and scalastyle checks. The PEP 8 report is removed right after the check is complete. * Updates to the ["Contributing to Spark"](https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark) guide will be submitted elsewhere, as I don't believe that text is part of the Spark repo. Author: Nicholas Chammas <nicholas.chammas@gmail.com> Author: nchammas <nicholas.chammas@gmail.com> Closes #1744 from nchammas/master and squashes the following commits: 274b238 [Nicholas Chammas] [SPARK-2627] [PySpark] minor indentation changes 983d963 [nchammas] Merge pull request #5 from apache/master 1db5314 [nchammas] Merge pull request #4 from apache/master 0e0245f [Nicholas Chammas] [SPARK-2627] undo erroneous whitespace fixes bf30942 [Nicholas Chammas] [SPARK-2627] PEP8: comment spacing 6db9a44 [nchammas] Merge pull request #3 from apache/master 7b4750e [Nicholas Chammas] merge upstream changes 91b7584 [Nicholas Chammas] [SPARK-2627] undo unnecessary line breaks 44e3e56 [Nicholas Chammas] [SPARK-2627] use tox.ini to exclude files b09fae2 [Nicholas Chammas] don't wrap comments unnecessarily bfb9f9f [Nicholas Chammas] [SPARK-2627] keep up with the PEP 8 fixes 9da347f [nchammas] Merge pull request #2 from apache/master aa5b4b5 [Nicholas Chammas] [SPARK-2627] follow Spark bash style for if blocks d0a83b9 [Nicholas Chammas] [SPARK-2627] check that pep8 downloaded fine dffb5dd [Nicholas Chammas] [SPARK-2627] download pep8 at runtime a1ce7ae [Nicholas Chammas] [SPARK-2627] space out test report sections 21da538 [Nicholas Chammas] [SPARK-2627] it's PEP 8, not PEP8 6f4900b [Nicholas Chammas] [SPARK-2627] more misc PEP 8 fixes fe57ed0 [Nicholas Chammas] removing merge conflict backups 9c01d4c [nchammas] Merge pull request #1 from apache/master 9a66cb0 [Nicholas Chammas] resolving merge conflicts a31ccc4 [Nicholas Chammas] [SPARK-2627] miscellaneous PEP 8 fixes beaa9ac [Nicholas Chammas] [SPARK-2627] fail check on non-zero status 723ed39 [Nicholas Chammas] always delete the report file 0541ebb [Nicholas Chammas] [SPARK-2627] call Python linter from run-tests 12440fa [Nicholas Chammas] [SPARK-2627] add Scala linter 61c07b9 [Nicholas Chammas] [SPARK-2627] add Python linter 75ad552 [Nicholas Chammas] make check output style consistent
Nicholas Chammas authoredAs described in [SPARK-2627](https://issues.apache.org/jira/browse/SPARK-2627), we'd like Python code to automatically be checked for PEP 8 compliance by Jenkins. This pull request aims to do that. Notes: * We may need to install [`pep8`](https://pypi.python.org/pypi/pep8) on the build server. * I'm expecting tests to fail now that PEP 8 compliance is being checked as part of the build. I'm fine with cleaning up any remaining PEP 8 violations as part of this pull request. * I did not understand why the RAT and scalastyle reports are saved to text files. I did the same for the PEP 8 check, but only so that the console output style can match those for the RAT and scalastyle checks. The PEP 8 report is removed right after the check is complete. * Updates to the ["Contributing to Spark"](https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark) guide will be submitted elsewhere, as I don't believe that text is part of the Spark repo. Author: Nicholas Chammas <nicholas.chammas@gmail.com> Author: nchammas <nicholas.chammas@gmail.com> Closes #1744 from nchammas/master and squashes the following commits: 274b238 [Nicholas Chammas] [SPARK-2627] [PySpark] minor indentation changes 983d963 [nchammas] Merge pull request #5 from apache/master 1db5314 [nchammas] Merge pull request #4 from apache/master 0e0245f [Nicholas Chammas] [SPARK-2627] undo erroneous whitespace fixes bf30942 [Nicholas Chammas] [SPARK-2627] PEP8: comment spacing 6db9a44 [nchammas] Merge pull request #3 from apache/master 7b4750e [Nicholas Chammas] merge upstream changes 91b7584 [Nicholas Chammas] [SPARK-2627] undo unnecessary line breaks 44e3e56 [Nicholas Chammas] [SPARK-2627] use tox.ini to exclude files b09fae2 [Nicholas Chammas] don't wrap comments unnecessarily bfb9f9f [Nicholas Chammas] [SPARK-2627] keep up with the PEP 8 fixes 9da347f [nchammas] Merge pull request #2 from apache/master aa5b4b5 [Nicholas Chammas] [SPARK-2627] follow Spark bash style for if blocks d0a83b9 [Nicholas Chammas] [SPARK-2627] check that pep8 downloaded fine dffb5dd [Nicholas Chammas] [SPARK-2627] download pep8 at runtime a1ce7ae [Nicholas Chammas] [SPARK-2627] space out test report sections 21da538 [Nicholas Chammas] [SPARK-2627] it's PEP 8, not PEP8 6f4900b [Nicholas Chammas] [SPARK-2627] more misc PEP 8 fixes fe57ed0 [Nicholas Chammas] removing merge conflict backups 9c01d4c [nchammas] Merge pull request #1 from apache/master 9a66cb0 [Nicholas Chammas] resolving merge conflicts a31ccc4 [Nicholas Chammas] [SPARK-2627] miscellaneous PEP 8 fixes beaa9ac [Nicholas Chammas] [SPARK-2627] fail check on non-zero status 723ed39 [Nicholas Chammas] always delete the report file 0541ebb [Nicholas Chammas] [SPARK-2627] call Python linter from run-tests 12440fa [Nicholas Chammas] [SPARK-2627] add Scala linter 61c07b9 [Nicholas Chammas] [SPARK-2627] add Python linter 75ad552 [Nicholas Chammas] make check output style consistent
classification.py 10.02 KiB
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy
from numpy import array, shape
from pyspark import SparkContext
from pyspark.mllib._common import \
_dot, _get_unmangled_rdd, _get_unmangled_double_vector_rdd, \
_serialize_double_matrix, _deserialize_double_matrix, \
_serialize_double_vector, _deserialize_double_vector, \
_get_initial_weights, _serialize_rating, _regression_train_wrapper, \
_linear_predictor_typecheck, _get_unmangled_labeled_point_rdd
from pyspark.mllib.linalg import SparseVector
from pyspark.mllib.regression import LabeledPoint, LinearModel
from math import exp, log
class LogisticRegressionModel(LinearModel):
"""A linear binary classification model derived from logistic regression.
>>> data = [
... LabeledPoint(0.0, [0.0]),
... LabeledPoint(1.0, [1.0]),
... LabeledPoint(1.0, [2.0]),
... LabeledPoint(1.0, [3.0])
... ]
>>> lrm = LogisticRegressionWithSGD.train(sc.parallelize(data))
>>> lrm.predict(array([1.0])) > 0
True
>>> lrm.predict(array([0.0])) <= 0
True
>>> sparse_data = [
... LabeledPoint(0.0, SparseVector(2, {0: 0.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 1.0})),
... LabeledPoint(0.0, SparseVector(2, {0: 0.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 2.0}))
... ]
>>> lrm = LogisticRegressionWithSGD.train(sc.parallelize(sparse_data))
>>> lrm.predict(array([0.0, 1.0])) > 0
True
>>> lrm.predict(array([0.0, 0.0])) <= 0
True
>>> lrm.predict(SparseVector(2, {1: 1.0})) > 0
True
>>> lrm.predict(SparseVector(2, {1: 0.0})) <= 0
True
"""
def predict(self, x):
_linear_predictor_typecheck(x, self._coeff)
margin = _dot(x, self._coeff) + self._intercept
if margin > 0:
prob = 1 / (1 + exp(-margin))
else:
exp_margin = exp(margin)
prob = exp_margin / (1 + exp_margin)
return 1 if prob > 0.5 else 0
class LogisticRegressionWithSGD(object):
@classmethod
def train(cls, data, iterations=100, step=1.0, miniBatchFraction=1.0,
initialWeights=None, regParam=1.0, regType=None, intercept=False):
"""
Train a logistic regression model on the given data.
@param data: The training data.
@param iterations: The number of iterations (default: 100).
@param step: The step parameter used in SGD
(default: 1.0).
@param miniBatchFraction: Fraction of data to be used for each SGD
iteration.
@param initialWeights: The initial weights (default: None).
@param regParam: The regularizer parameter (default: 1.0).
@param regType: The type of regularizer used for training
our model.
Allowed values: "l1" for using L1Updater,
"l2" for using
SquaredL2Updater,
"none" for no regularizer.
(default: "none")
@param intercept: Boolean parameter which indicates the use
or not of the augmented representation for
training data (i.e. whether bias features
are activated or not).
"""
sc = data.context
if regType is None:
regType = "none"
train_func = lambda d, i: sc._jvm.PythonMLLibAPI().trainLogisticRegressionModelWithSGD(
d._jrdd, iterations, step, miniBatchFraction, i, regParam, regType, intercept)
return _regression_train_wrapper(sc, train_func, LogisticRegressionModel, data,
initialWeights)
class SVMModel(LinearModel):
"""A support vector machine.
>>> data = [
... LabeledPoint(0.0, [0.0]),
... LabeledPoint(1.0, [1.0]),
... LabeledPoint(1.0, [2.0]),
... LabeledPoint(1.0, [3.0])
... ]
>>> svm = SVMWithSGD.train(sc.parallelize(data))
>>> svm.predict(array([1.0])) > 0
True
>>> sparse_data = [
... LabeledPoint(0.0, SparseVector(2, {0: -1.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 1.0})),
... LabeledPoint(0.0, SparseVector(2, {0: 0.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 2.0}))
... ]
>>> svm = SVMWithSGD.train(sc.parallelize(sparse_data))
>>> svm.predict(SparseVector(2, {1: 1.0})) > 0
True
>>> svm.predict(SparseVector(2, {0: -1.0})) <= 0
True
"""
def predict(self, x):
_linear_predictor_typecheck(x, self._coeff)
margin = _dot(x, self._coeff) + self._intercept
return 1 if margin >= 0 else 0
class SVMWithSGD(object):
@classmethod
def train(cls, data, iterations=100, step=1.0, regParam=1.0,
miniBatchFraction=1.0, initialWeights=None, regType=None, intercept=False):
"""
Train a support vector machine on the given data.
@param data: The training data.
@param iterations: The number of iterations (default: 100).
@param step: The step parameter used in SGD
(default: 1.0).
@param regParam: The regularizer parameter (default: 1.0).
@param miniBatchFraction: Fraction of data to be used for each SGD
iteration.
@param initialWeights: The initial weights (default: None).
@param regType: The type of regularizer used for training
our model.
Allowed values: "l1" for using L1Updater,
"l2" for using
SquaredL2Updater,
"none" for no regularizer.
(default: "none")
@param intercept: Boolean parameter which indicates the use
or not of the augmented representation for
training data (i.e. whether bias features
are activated or not).
"""
sc = data.context
if regType is None:
regType = "none"
train_func = lambda d, i: sc._jvm.PythonMLLibAPI().trainSVMModelWithSGD(
d._jrdd, iterations, step, regParam, miniBatchFraction, i, regType, intercept)
return _regression_train_wrapper(sc, train_func, SVMModel, data, initialWeights)
class NaiveBayesModel(object):
"""
Model for Naive Bayes classifiers.
Contains two parameters:
- pi: vector of logs of class priors (dimension C)
- theta: matrix of logs of class conditional probabilities (CxD)
>>> data = [
... LabeledPoint(0.0, [0.0, 0.0]),
... LabeledPoint(0.0, [0.0, 1.0]),
... LabeledPoint(1.0, [1.0, 0.0]),
... ]
>>> model = NaiveBayes.train(sc.parallelize(data))
>>> model.predict(array([0.0, 1.0]))
0.0
>>> model.predict(array([1.0, 0.0]))
1.0
>>> sparse_data = [
... LabeledPoint(0.0, SparseVector(2, {1: 0.0})),
... LabeledPoint(0.0, SparseVector(2, {1: 1.0})),
... LabeledPoint(1.0, SparseVector(2, {0: 1.0}))
... ]
>>> model = NaiveBayes.train(sc.parallelize(sparse_data))
>>> model.predict(SparseVector(2, {1: 1.0}))
0.0
>>> model.predict(SparseVector(2, {0: 1.0}))
1.0
"""
def __init__(self, labels, pi, theta):
self.labels = labels
self.pi = pi
self.theta = theta
def predict(self, x):
"""Return the most likely class for a data vector x"""
return self.labels[numpy.argmax(self.pi + _dot(x, self.theta.transpose()))]
class NaiveBayes(object):
@classmethod
def train(cls, data, lambda_=1.0):
"""
Train a Naive Bayes model given an RDD of (label, features) vectors.
This is the Multinomial NB (U{http://tinyurl.com/lsdw6p}) which can
handle all kinds of discrete data. For example, by converting
documents into TF-IDF vectors, it can be used for document
classification. By making every vector a 0-1 vector, it can also be
used as Bernoulli NB (U{http://tinyurl.com/p7c96j6}).
@param data: RDD of NumPy vectors, one per element, where the first
coordinate is the label and the rest is the feature vector
(e.g. a count vector).
@param lambda_: The smoothing parameter
"""
sc = data.context
dataBytes = _get_unmangled_labeled_point_rdd(data)
ans = sc._jvm.PythonMLLibAPI().trainNaiveBayes(dataBytes._jrdd, lambda_)
return NaiveBayesModel(
_deserialize_double_vector(ans[0]),
_deserialize_double_vector(ans[1]),
_deserialize_double_matrix(ans[2]))
def _test():
import doctest
globs = globals().copy()
globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2)
(failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
globs['sc'].stop()
if failure_count:
exit(-1)
if __name__ == "__main__":
_test()