-
Xiangrui Meng authored
This PR adds a Java unit test and user guide for `StringIndexer`. I put it before `OneHotEncoder` because they are closely related. jkbradley Author: Xiangrui Meng <meng@databricks.com> Closes #6561 from mengxr/SPARK-7582 and squashes the following commits: 4bba4f1 [Xiangrui Meng] fix example ba1cd1b [Xiangrui Meng] fix style 7fa18d1 [Xiangrui Meng] add user guide for StringIndexer 136cb93 [Xiangrui Meng] add a Java unit test for StringIndexer
Xiangrui Meng authoredThis PR adds a Java unit test and user guide for `StringIndexer`. I put it before `OneHotEncoder` because they are closely related. jkbradley Author: Xiangrui Meng <meng@databricks.com> Closes #6561 from mengxr/SPARK-7582 and squashes the following commits: 4bba4f1 [Xiangrui Meng] fix example ba1cd1b [Xiangrui Meng] fix style 7fa18d1 [Xiangrui Meng] add user guide for StringIndexer 136cb93 [Xiangrui Meng] add a Java unit test for StringIndexer
layout: global
title: Feature Extraction, Transformation, and Selection - SparkML
displayTitle: <a href="ml-guide.html">ML</a> - Features
This section covers algorithms for working with features, roughly divided into these groups:
- Extraction: Extracting features from "raw" data
- Transformation: Scaling, converting, or modifying features
- Selection: Selecting a subset from a larger set of features
Table of Contents
- This will become a table of contents (this text will be scraped). {:toc}
Feature Extractors
TF-IDF (HashingTF and IDF)
Term Frequency-Inverse Document Frequency (TF-IDF) is a common text pre-processing step. In Spark ML, TF-IDF is separate into two parts: TF (+hashing) and IDF.
TF: HashingTF
is a Transformer
which takes sets of terms and converts those sets into fixed-length feature vectors. In text processing, a "set of terms" might be a bag of words.
The algorithm combines Term Frequency (TF) counts with the hashing trick for dimensionality reduction.
IDF: IDF
is an Estimator
which fits on a dataset and produces an IDFModel
. The IDFModel
takes feature vectors (generally created from HashingTF
) and scales each column. Intuitively, it down-weights columns which appear frequently in a corpus.
Please refer to the MLlib user guide on TF-IDF for more details on Term Frequency and Inverse Document Frequency. For API details, refer to the HashingTF API docs and the IDF API docs.
In the following code segment, we start with a set of sentences. We split each sentence into words using Tokenizer
. For each sentence (bag of words), we use HashingTF
to hash the sentence into a feature vector. We use IDF
to rescale the feature vectors; this generally improves performance when using text as features. Our feature vectors could then be passed to a learning algorithm.
val sentenceData = sqlContext.createDataFrame(Seq( (0, "Hi I heard about Spark"), (0, "I wish Java could use case classes"), (1, "Logistic regression models are neat") )).toDF("label", "sentence") val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words") val wordsData = tokenizer.transform(sentenceData) val hashingTF = new HashingTF().setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(20) val featurizedData = hashingTF.transform(wordsData) val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features") val idfModel = idf.fit(featurizedData) val rescaledData = idfModel.transform(featurizedData) rescaledData.select("features", "label").take(3).foreach(println) {% endhighlight %}
import org.apache.spark.api.java.JavaRDD; import org.apache.spark.ml.feature.HashingTF; import org.apache.spark.ml.feature.IDF; import org.apache.spark.ml.feature.Tokenizer; import org.apache.spark.mllib.linalg.Vector; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.Row; import org.apache.spark.sql.RowFactory; import org.apache.spark.sql.types.DataTypes; import org.apache.spark.sql.types.Metadata; import org.apache.spark.sql.types.StructField; import org.apache.spark.sql.types.StructType;
JavaRDD jrdd = jsc.parallelize(Lists.newArrayList( RowFactory.create(0, "Hi I heard about Spark"), RowFactory.create(0, "I wish Java could use case classes"), RowFactory.create(1, "Logistic regression models are neat") )); StructType schema = new StructType(new StructField[]{ new StructField("label", DataTypes.DoubleType, false, Metadata.empty()), new StructField("sentence", DataTypes.StringType, false, Metadata.empty()) }); DataFrame sentenceData = sqlContext.createDataFrame(jrdd, schema); Tokenizer tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words"); DataFrame wordsData = tokenizer.transform(sentenceData); int numFeatures = 20; HashingTF hashingTF = new HashingTF() .setInputCol("words") .setOutputCol("rawFeatures") .setNumFeatures(numFeatures); DataFrame featurizedData = hashingTF.transform(wordsData); IDF idf = new IDF().setInputCol("rawFeatures").setOutputCol("features"); IDFModel idfModel = idf.fit(featurizedData); DataFrame rescaledData = idfModel.transform(featurizedData); for (Row r : rescaledData.select("features", "label").take(3)) { Vector features = r.getAs(0); Double label = r.getDouble(1); System.out.println(features); } {% endhighlight %}
sentenceData = sqlContext.createDataFrame([ (0, "Hi I heard about Spark"), (0, "I wish Java could use case classes"), (1, "Logistic regression models are neat") ], ["label", "sentence"]) tokenizer = Tokenizer(inputCol="sentence", outputCol="words") wordsData = tokenizer.transform(sentenceData) hashingTF = HashingTF(inputCol="words", outputCol="rawFeatures", numFeatures=20) featurizedData = hashingTF.transform(wordsData) idf = IDF(inputCol="rawFeatures", outputCol="features") idfModel = idf.fit(featurizedData) rescaledData = idfModel.transform(featurizedData) for features_label in rescaledData.select("features", "label").take(3): print(features_label) {% endhighlight %}
Word2Vec
Word2Vec
is an Estimator
which takes sequences of words that represents documents and trains a Word2VecModel
. The model is a Map(String, Vector)
essentially, which maps each word to an unique fix-sized vector. The Word2VecModel
transforms each documents into a vector using the average of all words in the document, which aims to other computations of documents such as similarity calculation consequencely. Please refer to the MLlib user guide on Word2Vec for more details on Word2Vec.
Word2Vec is implemented in Word2Vec. In the following code segment, we start with a set of documents, each of them is represented as a sequence of words. For each document, we transform it into a feature vector. This feature vector could then be passed to a learning algorithm.
// Input data: Each row is a bag of words from a sentence or document. val documentDF = sqlContext.createDataFrame(Seq( "Hi I heard about Spark".split(" "), "I wish Java could use case classes".split(" "), "Logistic regression models are neat".split(" ") ).map(Tuple1.apply)).toDF("text")
// Learn a mapping from words to Vectors. val word2Vec = new Word2Vec() .setInputCol("text") .setOutputCol("result") .setVectorSize(3) .setMinCount(0) val model = word2Vec.fit(documentDF) val result = model.transform(documentDF) result.select("result").take(3).foreach(println) {% endhighlight %}
import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.Row; import org.apache.spark.sql.RowFactory; import org.apache.spark.sql.SQLContext; import org.apache.spark.sql.types.*;
JavaSparkContext jsc = ... SQLContext sqlContext = ...
// Input data: Each row is a bag of words from a sentence or document. JavaRDD jrdd = jsc.parallelize(Lists.newArrayList( RowFactory.create(Lists.newArrayList("Hi I heard about Spark".split(" "))), RowFactory.create(Lists.newArrayList("I wish Java could use case classes".split(" "))), RowFactory.create(Lists.newArrayList("Logistic regression models are neat".split(" "))) )); StructType schema = new StructType(new StructField[]{ new StructField("text", new ArrayType(DataTypes.StringType, true), false, Metadata.empty()) }); DataFrame documentDF = sqlContext.createDataFrame(jrdd, schema);
// Learn a mapping from words to Vectors. Word2Vec word2Vec = new Word2Vec() .setInputCol("text") .setOutputCol("result") .setVectorSize(3) .setMinCount(0); Word2VecModel model = word2Vec.fit(documentDF); DataFrame result = model.transform(documentDF); for (Row r: result.select("result").take(3)) { System.out.println(r); } {% endhighlight %}
Input data: Each row is a bag of words from a sentence or document.
documentDF = sqlContext.createDataFrame([ ("Hi I heard about Spark".split(" "), ), ("I wish Java could use case classes".split(" "), ), ("Logistic regression models are neat".split(" "), ) ], ["text"])
Learn a mapping from words to Vectors.
word2Vec = Word2Vec(vectorSize=3, minCount=0, inputCol="text", outputCol="result") model = word2Vec.fit(documentDF) result = model.transform(documentDF) for feature in result.select("result").take(3): print(feature) {% endhighlight %}
Feature Transformers
Tokenizer
Tokenization is the process of taking text (such as a sentence) and breaking it into individual terms (usually words). A simple Tokenizer class provides this functionality. The example below shows how to split sentences into sequences of words.