-
Joseph K. Bradley authored
Added examples for statistical summarization: * Scala: StatisticalSummary.scala ** Tests: correlation, MultivariateOnlineSummarizer * python: statistical_summary.py ** Tests: correlation (since MultivariateOnlineSummarizer has no Python API) Added examples for random and sampled RDDs: * Scala: RandomAndSampledRDDs.scala * python: random_and_sampled_rdds.py * Both test: ** RandomRDDGenerators.normalRDD, normalVectorRDD ** RDD.sample, takeSample, sampleByKey Added sc.stop() to all examples. CorrelationSuite.scala * Added 1 test for RDDs with only 1 value RowMatrix.scala * numCols(): Added check for numRows = 0, with error message. * computeCovariance(): Added check for numRows <= 1, with error message. Python SparseVector (pyspark/mllib/linalg.py) * Added toDense() function python/run-tests script * Added stat.py (doc test) CC: mengxr dorx Main changes were examples to show usage across APIs. Author: Joseph K. Bradley <joseph.kurata.bradley@gmail.com> Closes #1878 from jkbradley/mllib-stats-api-check and squashes the following commits: ea5c047 [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into mllib-stats-api-check dafebe2 [Joseph K. Bradley] Bug fixes for examples SampledRDDs.scala and sampled_rdds.py: Check for division by 0 and for missing key in maps. 8d1e555 [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into mllib-stats-api-check 60c72d9 [Joseph K. Bradley] Fixed stat.py doc test to work for Python versions printing nan or NaN. b20d90a [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into mllib-stats-api-check 4e5d15e [Joseph K. Bradley] Changed pyspark/mllib/stat.py doc tests to use NaN instead of nan. 32173b7 [Joseph K. Bradley] Stats examples update. c8c20dc [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into mllib-stats-api-check cf70b07 [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into mllib-stats-api-check 0b7cec3 [Joseph K. Bradley] Small updates based on code review. Renamed statistical_summary.py to correlations.py ab48f6e [Joseph K. Bradley] RowMatrix.scala * numCols(): Added check for numRows = 0, with error message. * computeCovariance(): Added check for numRows <= 1, with error message. 65e4ebc [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into mllib-stats-api-check 8195c78 [Joseph K. Bradley] Added examples for random and sampled RDDs: * Scala: RandomAndSampledRDDs.scala * python: random_and_sampled_rdds.py * Both test: ** RandomRDDGenerators.normalRDD, normalVectorRDD ** RDD.sample, takeSample, sampleByKey 064985b [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into mllib-stats-api-check ee918e9 [Joseph K. Bradley] Added examples for statistical summarization: * Scala: StatisticalSummary.scala ** Tests: correlation, MultivariateOnlineSummarizer * python: statistical_summary.py ** Tests: correlation (since MultivariateOnlineSummarizer has no Python API)
Joseph K. Bradley authoredAdded examples for statistical summarization: * Scala: StatisticalSummary.scala ** Tests: correlation, MultivariateOnlineSummarizer * python: statistical_summary.py ** Tests: correlation (since MultivariateOnlineSummarizer has no Python API) Added examples for random and sampled RDDs: * Scala: RandomAndSampledRDDs.scala * python: random_and_sampled_rdds.py * Both test: ** RandomRDDGenerators.normalRDD, normalVectorRDD ** RDD.sample, takeSample, sampleByKey Added sc.stop() to all examples. CorrelationSuite.scala * Added 1 test for RDDs with only 1 value RowMatrix.scala * numCols(): Added check for numRows = 0, with error message. * computeCovariance(): Added check for numRows <= 1, with error message. Python SparseVector (pyspark/mllib/linalg.py) * Added toDense() function python/run-tests script * Added stat.py (doc test) CC: mengxr dorx Main changes were examples to show usage across APIs. Author: Joseph K. Bradley <joseph.kurata.bradley@gmail.com> Closes #1878 from jkbradley/mllib-stats-api-check and squashes the following commits: ea5c047 [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into mllib-stats-api-check dafebe2 [Joseph K. Bradley] Bug fixes for examples SampledRDDs.scala and sampled_rdds.py: Check for division by 0 and for missing key in maps. 8d1e555 [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into mllib-stats-api-check 60c72d9 [Joseph K. Bradley] Fixed stat.py doc test to work for Python versions printing nan or NaN. b20d90a [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into mllib-stats-api-check 4e5d15e [Joseph K. Bradley] Changed pyspark/mllib/stat.py doc tests to use NaN instead of nan. 32173b7 [Joseph K. Bradley] Stats examples update. c8c20dc [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into mllib-stats-api-check cf70b07 [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into mllib-stats-api-check 0b7cec3 [Joseph K. Bradley] Small updates based on code review. Renamed statistical_summary.py to correlations.py ab48f6e [Joseph K. Bradley] RowMatrix.scala * numCols(): Added check for numRows = 0, with error message. * computeCovariance(): Added check for numRows <= 1, with error message. 65e4ebc [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into mllib-stats-api-check 8195c78 [Joseph K. Bradley] Added examples for random and sampled RDDs: * Scala: RandomAndSampledRDDs.scala * python: random_and_sampled_rdds.py * Both test: ** RandomRDDGenerators.normalRDD, normalVectorRDD ** RDD.sample, takeSample, sampleByKey 064985b [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into mllib-stats-api-check ee918e9 [Joseph K. Bradley] Added examples for statistical summarization: * Scala: StatisticalSummary.scala ** Tests: correlation, MultivariateOnlineSummarizer * python: statistical_summary.py ** Tests: correlation (since MultivariateOnlineSummarizer has no Python API)
sampled_rdds.py 3.10 KiB
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Randomly sampled RDDs.
"""
import sys
from pyspark import SparkContext
from pyspark.mllib.util import MLUtils
if __name__ == "__main__":
if len(sys.argv) not in [1, 2]:
print >> sys.stderr, "Usage: sampled_rdds <libsvm data file>"
exit(-1)
if len(sys.argv) == 2:
datapath = sys.argv[1]
else:
datapath = 'data/mllib/sample_binary_classification_data.txt'
sc = SparkContext(appName="PythonSampledRDDs")
fraction = 0.1 # fraction of data to sample
examples = MLUtils.loadLibSVMFile(sc, datapath)
numExamples = examples.count()
if numExamples == 0:
print >> sys.stderr, "Error: Data file had no samples to load."
exit(1)
print 'Loaded data with %d examples from file: %s' % (numExamples, datapath)
# Example: RDD.sample() and RDD.takeSample()
expectedSampleSize = int(numExamples * fraction)
print 'Sampling RDD using fraction %g. Expected sample size = %d.' \
% (fraction, expectedSampleSize)
sampledRDD = examples.sample(withReplacement = True, fraction = fraction)
print ' RDD.sample(): sample has %d examples' % sampledRDD.count()
sampledArray = examples.takeSample(withReplacement = True, num = expectedSampleSize)
print ' RDD.takeSample(): sample has %d examples' % len(sampledArray)
print
# Example: RDD.sampleByKey()
keyedRDD = examples.map(lambda lp: (int(lp.label), lp.features))
print ' Keyed data using label (Int) as key ==> Orig'
# Count examples per label in original data.
keyCountsA = keyedRDD.countByKey()
# Subsample, and count examples per label in sampled data.
fractions = {}
for k in keyCountsA.keys():
fractions[k] = fraction
sampledByKeyRDD = keyedRDD.sampleByKey(withReplacement = True, fractions = fractions)
keyCountsB = sampledByKeyRDD.countByKey()
sizeB = sum(keyCountsB.values())
print ' Sampled %d examples using approximate stratified sampling (by label). ==> Sample' \
% sizeB
# Compare samples
print ' \tFractions of examples with key'
print 'Key\tOrig\tSample'
for k in sorted(keyCountsA.keys()):
fracA = keyCountsA[k] / float(numExamples)
if sizeB != 0:
fracB = keyCountsB.get(k, 0) / float(sizeB)
else:
fracB = 0
print '%d\t%g\t%g' % (k, fracA, fracB)
sc.stop()