-
Joseph K. Bradley authored
## What changes were proposed in this pull request? Made DataFrame-based API primary * Spark doc menu bar and other places now link to ml-guide.html, not mllib-guide.html * mllib-guide.html keeps RDD-specific list of features, with a link at the top redirecting people to ml-guide.html * ml-guide.html includes a "maintenance mode" announcement about the RDD-based API * **Reviewers: please check this carefully** * (minor) Titles for DF API no longer include "- spark.ml" suffix. Titles for RDD API have "- RDD-based API" suffix * Moved migration guide to ml-guide from mllib-guide * Also moved past guides from mllib-migration-guides to ml-migration-guides, with a redirect link on mllib-migration-guides * **Reviewers**: I did not change any of the content of the migration guides. Reorganized DataFrame-based guide: * ml-guide.html mimics the old mllib-guide.html page in terms of content: overview, migration guide, etc. * Moved Pipeline description into ml-pipeline.html and moved tuning into ml-tuning.html * **Reviewers**: I did not change the content of these guides, except some intro text. * Sidebar remains the same, but with pipeline and tuning sections added Other: * ml-classification-regression.html: Moved text about linear methods to new section in page ## How was this patch tested? Generated docs locally Author: Joseph K. Bradley <joseph@databricks.com> Closes #14213 from jkbradley/ml-guide-2.0.
Joseph K. Bradley authored## What changes were proposed in this pull request? Made DataFrame-based API primary * Spark doc menu bar and other places now link to ml-guide.html, not mllib-guide.html * mllib-guide.html keeps RDD-specific list of features, with a link at the top redirecting people to ml-guide.html * ml-guide.html includes a "maintenance mode" announcement about the RDD-based API * **Reviewers: please check this carefully** * (minor) Titles for DF API no longer include "- spark.ml" suffix. Titles for RDD API have "- RDD-based API" suffix * Moved migration guide to ml-guide from mllib-guide * Also moved past guides from mllib-migration-guides to ml-migration-guides, with a redirect link on mllib-migration-guides * **Reviewers**: I did not change any of the content of the migration guides. Reorganized DataFrame-based guide: * ml-guide.html mimics the old mllib-guide.html page in terms of content: overview, migration guide, etc. * Moved Pipeline description into ml-pipeline.html and moved tuning into ml-tuning.html * **Reviewers**: I did not change the content of these guides, except some intro text. * Sidebar remains the same, but with pipeline and tuning sections added Other: * ml-classification-regression.html: Moved text about linear methods to new section in page ## How was this patch tested? Generated docs locally Author: Joseph K. Bradley <joseph@databricks.com> Closes #14213 from jkbradley/ml-guide-2.0.
layout: global
title: Ensembles - RDD-based API
displayTitle: Ensembles - RDD-based API
- Table of contents {:toc}
An ensemble method
is a learning algorithm which creates a model composed of a set of other base models.
spark.mllib
supports two major ensemble algorithms: GradientBoostedTrees
and RandomForest
.
Both use decision trees as their base models.
Gradient-Boosted Trees vs. Random Forests
Both Gradient-Boosted Trees (GBTs) and Random Forests are algorithms for learning ensembles of trees, but the training processes are different. There are several practical trade-offs:
- GBTs train one tree at a time, so they can take longer to train than random forests. Random Forests can train multiple trees in parallel.
- On the other hand, it is often reasonable to use smaller (shallower) trees with GBTs than with Random Forests, and training smaller trees takes less time.
- Random Forests can be less prone to overfitting. Training more trees in a Random Forest reduces the likelihood of overfitting, but training more trees with GBTs increases the likelihood of overfitting. (In statistical language, Random Forests reduce variance by using more trees, whereas GBTs reduce bias by using more trees.)
- Random Forests can be easier to tune since performance improves monotonically with the number of trees (whereas performance can start to decrease for GBTs if the number of trees grows too large).
In short, both algorithms can be effective, and the choice should be based on the particular dataset.
Random Forests
Random forests are ensembles of decision trees. Random forests are one of the most successful machine learning models for classification and regression. They combine many decision trees in order to reduce the risk of overfitting. Like decision trees, random forests handle categorical features, extend to the multiclass classification setting, do not require feature scaling, and are able to capture non-linearities and feature interactions.
spark.mllib
supports random forests for binary and multiclass classification and for regression,
using both continuous and categorical features.
spark.mllib
implements random forests using the existing decision tree
implementation. Please see the decision tree guide for more information on trees.