Skip to content
Snippets Groups Projects
  • Davies Liu's avatar
    872fc669
    [SPARK-4124] [MLlib] [PySpark] simplify serialization in MLlib Python API · 872fc669
    Davies Liu authored
    Create several helper functions to call MLlib Java API, convert the arguments to Java type and convert return value to Python object automatically, this simplify serialization in MLlib Python API very much.
    
    After this, the MLlib Python API does not need to deal with serialization details anymore, it's easier to add new API.
    
    cc mengxr
    
    Author: Davies Liu <davies@databricks.com>
    
    Closes #2995 from davies/cleanup and squashes the following commits:
    
    8fa6ec6 [Davies Liu] address comments
    16b85a0 [Davies Liu] Merge branch 'master' of github.com:apache/spark into cleanup
    43743e5 [Davies Liu] bugfix
    731331f [Davies Liu] simplify serialization in MLlib Python API
    872fc669
    History
    [SPARK-4124] [MLlib] [PySpark] simplify serialization in MLlib Python API
    Davies Liu authored
    Create several helper functions to call MLlib Java API, convert the arguments to Java type and convert return value to Python object automatically, this simplify serialization in MLlib Python API very much.
    
    After this, the MLlib Python API does not need to deal with serialization details anymore, it's easier to add new API.
    
    cc mengxr
    
    Author: Davies Liu <davies@databricks.com>
    
    Closes #2995 from davies/cleanup and squashes the following commits:
    
    8fa6ec6 [Davies Liu] address comments
    16b85a0 [Davies Liu] Merge branch 'master' of github.com:apache/spark into cleanup
    43743e5 [Davies Liu] bugfix
    731331f [Davies Liu] simplify serialization in MLlib Python API
classification.py 9.39 KiB
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from math import exp

import numpy
from numpy import array

from pyspark.mllib.common import callMLlibFunc
from pyspark.mllib.linalg import SparseVector, _convert_to_vector
from pyspark.mllib.regression import LabeledPoint, LinearModel, _regression_train_wrapper


__all__ = ['LogisticRegressionModel', 'LogisticRegressionWithSGD', 'SVMModel',
           'SVMWithSGD', 'NaiveBayesModel', 'NaiveBayes']


class LogisticRegressionModel(LinearModel):

    """A linear binary classification model derived from logistic regression.

    >>> data = [
    ...     LabeledPoint(0.0, [0.0]),
    ...     LabeledPoint(1.0, [1.0]),
    ...     LabeledPoint(1.0, [2.0]),
    ...     LabeledPoint(1.0, [3.0])
    ... ]
    >>> lrm = LogisticRegressionWithSGD.train(sc.parallelize(data))
    >>> lrm.predict(array([1.0])) > 0
    True
    >>> lrm.predict(array([0.0])) <= 0
    True
    >>> sparse_data = [
    ...     LabeledPoint(0.0, SparseVector(2, {0: 0.0})),
    ...     LabeledPoint(1.0, SparseVector(2, {1: 1.0})),
    ...     LabeledPoint(0.0, SparseVector(2, {0: 0.0})),
    ...     LabeledPoint(1.0, SparseVector(2, {1: 2.0}))
    ... ]
    >>> lrm = LogisticRegressionWithSGD.train(sc.parallelize(sparse_data))
    >>> lrm.predict(array([0.0, 1.0])) > 0
    True
    >>> lrm.predict(array([0.0, 0.0])) <= 0
    True
    >>> lrm.predict(SparseVector(2, {1: 1.0})) > 0
    True
    >>> lrm.predict(SparseVector(2, {1: 0.0})) <= 0
    True
    """

    def predict(self, x):
        margin = self.weights.dot(x) + self._intercept
        if margin > 0:
            prob = 1 / (1 + exp(-margin))
        else:
            exp_margin = exp(margin)
            prob = exp_margin / (1 + exp_margin)
        return 1 if prob > 0.5 else 0


class LogisticRegressionWithSGD(object):

    @classmethod
    def train(cls, data, iterations=100, step=1.0, miniBatchFraction=1.0,
              initialWeights=None, regParam=1.0, regType="none", intercept=False):
        """
        Train a logistic regression model on the given data.

        :param data:              The training data.
        :param iterations:        The number of iterations (default: 100).
        :param step:              The step parameter used in SGD
                                  (default: 1.0).
        :param miniBatchFraction: Fraction of data to be used for each SGD
                                  iteration.
        :param initialWeights:    The initial weights (default: None).
        :param regParam:          The regularizer parameter (default: 1.0).
        :param regType:           The type of regularizer used for training
                                  our model.

                                  :Allowed values:
                                     - "l1" for using L1Updater
                                     - "l2" for using SquaredL2Updater
                                     - "none" for no regularizer

                                     (default: "none")

        @param intercept:         Boolean parameter which indicates the use
                                  or not of the augmented representation for
                                  training data (i.e. whether bias features
                                  are activated or not).
        """
        def train(rdd, i):
            return callMLlibFunc("trainLogisticRegressionModelWithSGD", rdd, iterations, step,
                                 miniBatchFraction, i, regParam, regType, intercept)

        return _regression_train_wrapper(train, LogisticRegressionModel, data, initialWeights)


class SVMModel(LinearModel):

    """A support vector machine.

    >>> data = [
    ...     LabeledPoint(0.0, [0.0]),
    ...     LabeledPoint(1.0, [1.0]),
    ...     LabeledPoint(1.0, [2.0]),
    ...     LabeledPoint(1.0, [3.0])
    ... ]
    >>> svm = SVMWithSGD.train(sc.parallelize(data))
    >>> svm.predict(array([1.0])) > 0
    True
    >>> sparse_data = [
    ...     LabeledPoint(0.0, SparseVector(2, {0: -1.0})),
    ...     LabeledPoint(1.0, SparseVector(2, {1: 1.0})),
    ...     LabeledPoint(0.0, SparseVector(2, {0: 0.0})),
    ...     LabeledPoint(1.0, SparseVector(2, {1: 2.0}))
    ... ]
    >>> svm = SVMWithSGD.train(sc.parallelize(sparse_data))
    >>> svm.predict(SparseVector(2, {1: 1.0})) > 0
    True
    >>> svm.predict(SparseVector(2, {0: -1.0})) <= 0
    True
    """

    def predict(self, x):
        margin = self.weights.dot(x) + self.intercept
        return 1 if margin >= 0 else 0


class SVMWithSGD(object):

    @classmethod
    def train(cls, data, iterations=100, step=1.0, regParam=1.0,
              miniBatchFraction=1.0, initialWeights=None, regType="none", intercept=False):
        """
        Train a support vector machine on the given data.

        :param data:              The training data.
        :param iterations:        The number of iterations (default: 100).
        :param step:              The step parameter used in SGD
                                  (default: 1.0).
        :param regParam:          The regularizer parameter (default: 1.0).
        :param miniBatchFraction: Fraction of data to be used for each SGD
                                  iteration.
        :param initialWeights:    The initial weights (default: None).
        :param regType:           The type of regularizer used for training
                                  our model.

                                  :Allowed values:
                                     - "l1" for using L1Updater
                                     - "l2" for using SquaredL2Updater,
                                     - "none" for no regularizer.

                                     (default: "none")

        @param intercept:         Boolean parameter which indicates the use
                                  or not of the augmented representation for
                                  training data (i.e. whether bias features
                                  are activated or not).
        """
        def train(rdd, i):
            return callMLlibFunc("trainSVMModelWithSGD", rdd, iterations, step, regParam,
                                 miniBatchFraction, i, regType, intercept)

        return _regression_train_wrapper(train, SVMModel, data, initialWeights)


class NaiveBayesModel(object):

    """
    Model for Naive Bayes classifiers.

    Contains two parameters:
    - pi: vector of logs of class priors (dimension C)
    - theta: matrix of logs of class conditional probabilities (CxD)

    >>> data = [
    ...     LabeledPoint(0.0, [0.0, 0.0]),
    ...     LabeledPoint(0.0, [0.0, 1.0]),
    ...     LabeledPoint(1.0, [1.0, 0.0]),
    ... ]
    >>> model = NaiveBayes.train(sc.parallelize(data))
    >>> model.predict(array([0.0, 1.0]))
    0.0
    >>> model.predict(array([1.0, 0.0]))
    1.0
    >>> sparse_data = [
    ...     LabeledPoint(0.0, SparseVector(2, {1: 0.0})),
    ...     LabeledPoint(0.0, SparseVector(2, {1: 1.0})),
    ...     LabeledPoint(1.0, SparseVector(2, {0: 1.0}))
    ... ]
    >>> model = NaiveBayes.train(sc.parallelize(sparse_data))
    >>> model.predict(SparseVector(2, {1: 1.0}))
    0.0
    >>> model.predict(SparseVector(2, {0: 1.0}))
    1.0
    """

    def __init__(self, labels, pi, theta):
        self.labels = labels
        self.pi = pi
        self.theta = theta

    def predict(self, x):
        """Return the most likely class for a data vector x"""
        x = _convert_to_vector(x)
        return self.labels[numpy.argmax(self.pi + x.dot(self.theta.transpose()))]


class NaiveBayes(object):

    @classmethod
    def train(cls, data, lambda_=1.0):
        """
        Train a Naive Bayes model given an RDD of (label, features) vectors.

        This is the Multinomial NB (U{http://tinyurl.com/lsdw6p}) which can
        handle all kinds of discrete data.  For example, by converting
        documents into TF-IDF vectors, it can be used for document
        classification.  By making every vector a 0-1 vector, it can also be
        used as Bernoulli NB (U{http://tinyurl.com/p7c96j6}).

        :param data: RDD of NumPy vectors, one per element, where the first
               coordinate is the label and the rest is the feature vector
               (e.g. a count vector).
        :param lambda_: The smoothing parameter
        """
        labels, pi, theta = callMLlibFunc("trainNaiveBayes", data, lambda_)
        return NaiveBayesModel(labels.toArray(), pi.toArray(), numpy.array(theta))


def _test():
    import doctest
    from pyspark import SparkContext
    globs = globals().copy()
    globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2)
    (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
    globs['sc'].stop()
    if failure_count:
        exit(-1)

if __name__ == "__main__":
    _test()