-
Davies Liu authored
Currently, we serialize the data between JVM and Python case by case manually, this cannot scale to support so many APIs in MLlib. This patch will try to address this problem by serialize the data using pickle protocol, using Pyrolite library to serialize/deserialize in JVM. Pickle protocol can be easily extended to support customized class. All the modules are refactored to use this protocol. Known issues: There will be some performance regression (both CPU and memory, the serialized data increased) Author: Davies Liu <davies.liu@gmail.com> Closes #2378 from davies/pickle_mllib and squashes the following commits: dffbba2 [Davies Liu] Merge branch 'master' of github.com:apache/spark into pickle_mllib 810f97f [Davies Liu] fix equal of matrix 032cd62 [Davies Liu] add more type check and conversion for user_product bd738ab [Davies Liu] address comments e431377 [Davies Liu] fix cache of rdd, refactor 19d0967 [Davies Liu] refactor Picklers 2511e76 [Davies Liu] cleanup 1fccf1a [Davies Liu] address comments a2cc855 [Davies Liu] fix tests 9ceff73 [Davies Liu] test size of serialized Rating 44e0551 [Davies Liu] fix cache a379a81 [Davies Liu] fix pickle array in python2.7 df625c7 [Davies Liu] Merge commit '154d141' into pickle_mllib 154d141 [Davies Liu] fix autobatchedpickler 44736d7 [Davies Liu] speed up pickling array in Python 2.7 e1d1bfc [Davies Liu] refactor 708dc02 [Davies Liu] fix tests 9dcfb63 [Davies Liu] fix style 88034f0 [Davies Liu] rafactor, address comments 46a501e [Davies Liu] choose batch size automatically df19464 [Davies Liu] memorize the module and class name during pickleing f3506c5 [Davies Liu] Merge branch 'master' into pickle_mllib 722dd96 [Davies Liu] cleanup _common.py 0ee1525 [Davies Liu] remove outdated tests b02e34f [Davies Liu] remove _common.py 84c721d [Davies Liu] Merge branch 'master' into pickle_mllib 4d7963e [Davies Liu] remove muanlly serialization 6d26b03 [Davies Liu] fix tests c383544 [Davies Liu] classification f2a0856 [Davies Liu] mllib/regression d9f691f [Davies Liu] mllib/util cccb8b1 [Davies Liu] mllib/tree 8fe166a [Davies Liu] Merge branch 'pickle' into pickle_mllib aa2287e [Davies Liu] random f1544c4 [Davies Liu] refactor clustering 52d1350 [Davies Liu] use new protocol in mllib/stat b30ef35 [Davies Liu] use pickle to serialize data for mllib/recommendation f44f771 [Davies Liu] enable tests about array 3908f5c [Davies Liu] Merge branch 'master' into pickle c77c87b [Davies Liu] cleanup debugging code 60e4e2f [Davies Liu] support unpickle array.array for Python 2.6
Davies Liu authoredCurrently, we serialize the data between JVM and Python case by case manually, this cannot scale to support so many APIs in MLlib. This patch will try to address this problem by serialize the data using pickle protocol, using Pyrolite library to serialize/deserialize in JVM. Pickle protocol can be easily extended to support customized class. All the modules are refactored to use this protocol. Known issues: There will be some performance regression (both CPU and memory, the serialized data increased) Author: Davies Liu <davies.liu@gmail.com> Closes #2378 from davies/pickle_mllib and squashes the following commits: dffbba2 [Davies Liu] Merge branch 'master' of github.com:apache/spark into pickle_mllib 810f97f [Davies Liu] fix equal of matrix 032cd62 [Davies Liu] add more type check and conversion for user_product bd738ab [Davies Liu] address comments e431377 [Davies Liu] fix cache of rdd, refactor 19d0967 [Davies Liu] refactor Picklers 2511e76 [Davies Liu] cleanup 1fccf1a [Davies Liu] address comments a2cc855 [Davies Liu] fix tests 9ceff73 [Davies Liu] test size of serialized Rating 44e0551 [Davies Liu] fix cache a379a81 [Davies Liu] fix pickle array in python2.7 df625c7 [Davies Liu] Merge commit '154d141' into pickle_mllib 154d141 [Davies Liu] fix autobatchedpickler 44736d7 [Davies Liu] speed up pickling array in Python 2.7 e1d1bfc [Davies Liu] refactor 708dc02 [Davies Liu] fix tests 9dcfb63 [Davies Liu] fix style 88034f0 [Davies Liu] rafactor, address comments 46a501e [Davies Liu] choose batch size automatically df19464 [Davies Liu] memorize the module and class name during pickleing f3506c5 [Davies Liu] Merge branch 'master' into pickle_mllib 722dd96 [Davies Liu] cleanup _common.py 0ee1525 [Davies Liu] remove outdated tests b02e34f [Davies Liu] remove _common.py 84c721d [Davies Liu] Merge branch 'master' into pickle_mllib 4d7963e [Davies Liu] remove muanlly serialization 6d26b03 [Davies Liu] fix tests c383544 [Davies Liu] classification f2a0856 [Davies Liu] mllib/regression d9f691f [Davies Liu] mllib/util cccb8b1 [Davies Liu] mllib/tree 8fe166a [Davies Liu] Merge branch 'pickle' into pickle_mllib aa2287e [Davies Liu] random f1544c4 [Davies Liu] refactor clustering 52d1350 [Davies Liu] use new protocol in mllib/stat b30ef35 [Davies Liu] use pickle to serialize data for mllib/recommendation f44f771 [Davies Liu] enable tests about array 3908f5c [Davies Liu] Merge branch 'master' into pickle c77c87b [Davies Liu] cleanup debugging code 60e4e2f [Davies Liu] support unpickle array.array for Python 2.6
regression.py 10.14 KiB
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy as np
from numpy import array
from pyspark import SparkContext
from pyspark.mllib.linalg import SparseVector, _convert_to_vector
from pyspark.serializers import PickleSerializer, AutoBatchedSerializer
__all__ = ['LabeledPoint', 'LinearModel', 'LinearRegressionModel', 'RidgeRegressionModel'
'LinearRegressionWithSGD', 'LassoWithSGD', 'RidgeRegressionWithSGD']
class LabeledPoint(object):
"""
The features and labels of a data point.
@param label: Label for this data point.
@param features: Vector of features for this point (NumPy array, list,
pyspark.mllib.linalg.SparseVector, or scipy.sparse column matrix)
"""
def __init__(self, label, features):
self.label = label
self.features = _convert_to_vector(features)
def __reduce__(self):
return (LabeledPoint, (self.label, self.features))
def __str__(self):
return "(" + ",".join((str(self.label), str(self.features))) + ")"
def __repr__(self):
return "LabeledPoint(" + ",".join((repr(self.label), repr(self.features))) + ")"
class LinearModel(object):
"""A linear model that has a vector of coefficients and an intercept."""
def __init__(self, weights, intercept):
self._coeff = _convert_to_vector(weights)
self._intercept = intercept
@property
def weights(self):
return self._coeff
@property
def intercept(self):
return self._intercept
class LinearRegressionModelBase(LinearModel):
"""A linear regression model.
>>> lrmb = LinearRegressionModelBase(np.array([1.0, 2.0]), 0.1)
>>> abs(lrmb.predict(np.array([-1.03, 7.777])) - 14.624) < 1e-6
True
>>> abs(lrmb.predict(SparseVector(2, {0: -1.03, 1: 7.777})) - 14.624) < 1e-6
True
"""
def predict(self, x):
"""
Predict the value of the dependent variable given a vector x
containing values for the independent variables.
"""
return self.weights.dot(x) + self.intercept
class LinearRegressionModel(LinearRegressionModelBase):
"""A linear regression model derived from a least-squares fit.
>>> from pyspark.mllib.regression import LabeledPoint
>>> data = [
... LabeledPoint(0.0, [0.0]),
... LabeledPoint(1.0, [1.0]),
... LabeledPoint(3.0, [2.0]),
... LabeledPoint(2.0, [3.0])
... ]
>>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), initialWeights=np.array([1.0]))
>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
True
>>> abs(lrm.predict(np.array([1.0])) - 1) < 0.5
True
>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
True
>>> data = [
... LabeledPoint(0.0, SparseVector(1, {0: 0.0})),
... LabeledPoint(1.0, SparseVector(1, {0: 1.0})),
... LabeledPoint(3.0, SparseVector(1, {0: 2.0})),
... LabeledPoint(2.0, SparseVector(1, {0: 3.0}))
... ]
>>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), initialWeights=array([1.0]))
>>> abs(lrm.predict(array([0.0])) - 0) < 0.5
True
>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
True
"""
# train_func should take two parameters, namely data and initial_weights, and
# return the result of a call to the appropriate JVM stub.
# _regression_train_wrapper is responsible for setup and error checking.
def _regression_train_wrapper(sc, train_func, modelClass, data, initial_weights):
initial_weights = initial_weights or [0.0] * len(data.first().features)
ser = PickleSerializer()
initial_bytes = bytearray(ser.dumps(_convert_to_vector(initial_weights)))
# use AutoBatchedSerializer before cache to reduce the memory
# overhead in JVM
cached = data._reserialize(AutoBatchedSerializer(ser)).cache()
ans = train_func(cached._to_java_object_rdd(), initial_bytes)
assert len(ans) == 2, "JVM call result had unexpected length"
weights = ser.loads(str(ans[0]))
return modelClass(weights, ans[1])
class LinearRegressionWithSGD(object):
@classmethod
def train(cls, data, iterations=100, step=1.0, miniBatchFraction=1.0,
initialWeights=None, regParam=1.0, regType="none", intercept=False):
"""
Train a linear regression model on the given data.
@param data: The training data.
@param iterations: The number of iterations (default: 100).
@param step: The step parameter used in SGD
(default: 1.0).
@param miniBatchFraction: Fraction of data to be used for each SGD
iteration.
@param initialWeights: The initial weights (default: None).
@param regParam: The regularizer parameter (default: 1.0).
@param regType: The type of regularizer used for training
our model.
Allowed values: "l1" for using L1Updater,
"l2" for using
SquaredL2Updater,
"none" for no regularizer.
(default: "none")
@param intercept: Boolean parameter which indicates the use
or not of the augmented representation for
training data (i.e. whether bias features
are activated or not).
"""
sc = data.context
def train(jrdd, i):
return sc._jvm.PythonMLLibAPI().trainLinearRegressionModelWithSGD(
jrdd, iterations, step, miniBatchFraction, i, regParam, regType, intercept)
return _regression_train_wrapper(sc, train, LinearRegressionModel, data, initialWeights)
class LassoModel(LinearRegressionModelBase):
"""A linear regression model derived from a least-squares fit with an
l_1 penalty term.
>>> from pyspark.mllib.regression import LabeledPoint
>>> data = [
... LabeledPoint(0.0, [0.0]),
... LabeledPoint(1.0, [1.0]),
... LabeledPoint(3.0, [2.0]),
... LabeledPoint(2.0, [3.0])
... ]
>>> lrm = LassoWithSGD.train(sc.parallelize(data), initialWeights=array([1.0]))
>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
True
>>> abs(lrm.predict(np.array([1.0])) - 1) < 0.5
True
>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
True
>>> data = [
... LabeledPoint(0.0, SparseVector(1, {0: 0.0})),
... LabeledPoint(1.0, SparseVector(1, {0: 1.0})),
... LabeledPoint(3.0, SparseVector(1, {0: 2.0})),
... LabeledPoint(2.0, SparseVector(1, {0: 3.0}))
... ]
>>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), initialWeights=array([1.0]))
>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
True
>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
True
"""
class LassoWithSGD(object):
@classmethod
def train(cls, data, iterations=100, step=1.0, regParam=1.0,
miniBatchFraction=1.0, initialWeights=None):
"""Train a Lasso regression model on the given data."""
sc = data.context
def train(jrdd, i):
return sc._jvm.PythonMLLibAPI().trainLassoModelWithSGD(
jrdd, iterations, step, regParam, miniBatchFraction, i)
return _regression_train_wrapper(sc, train, LassoModel, data, initialWeights)
class RidgeRegressionModel(LinearRegressionModelBase):
"""A linear regression model derived from a least-squares fit with an
l_2 penalty term.
>>> from pyspark.mllib.regression import LabeledPoint
>>> data = [
... LabeledPoint(0.0, [0.0]),
... LabeledPoint(1.0, [1.0]),
... LabeledPoint(3.0, [2.0]),
... LabeledPoint(2.0, [3.0])
... ]
>>> lrm = RidgeRegressionWithSGD.train(sc.parallelize(data), initialWeights=array([1.0]))
>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
True
>>> abs(lrm.predict(np.array([1.0])) - 1) < 0.5
True
>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
True
>>> data = [
... LabeledPoint(0.0, SparseVector(1, {0: 0.0})),
... LabeledPoint(1.0, SparseVector(1, {0: 1.0})),
... LabeledPoint(3.0, SparseVector(1, {0: 2.0})),
... LabeledPoint(2.0, SparseVector(1, {0: 3.0}))
... ]
>>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), initialWeights=array([1.0]))
>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
True
>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
True
"""
class RidgeRegressionWithSGD(object):
@classmethod
def train(cls, data, iterations=100, step=1.0, regParam=1.0,
miniBatchFraction=1.0, initialWeights=None):
"""Train a ridge regression model on the given data."""
sc = data.context
def train(jrdd, i):
return sc._jvm.PythonMLLibAPI().trainRidgeModelWithSGD(
jrdd, iterations, step, regParam, miniBatchFraction, i)
return _regression_train_wrapper(sc, train, RidgeRegressionModel, data, initialWeights)
def _test():
import doctest
globs = globals().copy()
globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2)
(failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
globs['sc'].stop()
if failure_count:
exit(-1)
if __name__ == "__main__":
_test()