-
Davies Liu authored
Currently, we serialize the data between JVM and Python case by case manually, this cannot scale to support so many APIs in MLlib. This patch will try to address this problem by serialize the data using pickle protocol, using Pyrolite library to serialize/deserialize in JVM. Pickle protocol can be easily extended to support customized class. All the modules are refactored to use this protocol. Known issues: There will be some performance regression (both CPU and memory, the serialized data increased) Author: Davies Liu <davies.liu@gmail.com> Closes #2378 from davies/pickle_mllib and squashes the following commits: dffbba2 [Davies Liu] Merge branch 'master' of github.com:apache/spark into pickle_mllib 810f97f [Davies Liu] fix equal of matrix 032cd62 [Davies Liu] add more type check and conversion for user_product bd738ab [Davies Liu] address comments e431377 [Davies Liu] fix cache of rdd, refactor 19d0967 [Davies Liu] refactor Picklers 2511e76 [Davies Liu] cleanup 1fccf1a [Davies Liu] address comments a2cc855 [Davies Liu] fix tests 9ceff73 [Davies Liu] test size of serialized Rating 44e0551 [Davies Liu] fix cache a379a81 [Davies Liu] fix pickle array in python2.7 df625c7 [Davies Liu] Merge commit '154d141' into pickle_mllib 154d141 [Davies Liu] fix autobatchedpickler 44736d7 [Davies Liu] speed up pickling array in Python 2.7 e1d1bfc [Davies Liu] refactor 708dc02 [Davies Liu] fix tests 9dcfb63 [Davies Liu] fix style 88034f0 [Davies Liu] rafactor, address comments 46a501e [Davies Liu] choose batch size automatically df19464 [Davies Liu] memorize the module and class name during pickleing f3506c5 [Davies Liu] Merge branch 'master' into pickle_mllib 722dd96 [Davies Liu] cleanup _common.py 0ee1525 [Davies Liu] remove outdated tests b02e34f [Davies Liu] remove _common.py 84c721d [Davies Liu] Merge branch 'master' into pickle_mllib 4d7963e [Davies Liu] remove muanlly serialization 6d26b03 [Davies Liu] fix tests c383544 [Davies Liu] classification f2a0856 [Davies Liu] mllib/regression d9f691f [Davies Liu] mllib/util cccb8b1 [Davies Liu] mllib/tree 8fe166a [Davies Liu] Merge branch 'pickle' into pickle_mllib aa2287e [Davies Liu] random f1544c4 [Davies Liu] refactor clustering 52d1350 [Davies Liu] use new protocol in mllib/stat b30ef35 [Davies Liu] use pickle to serialize data for mllib/recommendation f44f771 [Davies Liu] enable tests about array 3908f5c [Davies Liu] Merge branch 'master' into pickle c77c87b [Davies Liu] cleanup debugging code 60e4e2f [Davies Liu] support unpickle array.array for Python 2.6
Davies Liu authoredCurrently, we serialize the data between JVM and Python case by case manually, this cannot scale to support so many APIs in MLlib. This patch will try to address this problem by serialize the data using pickle protocol, using Pyrolite library to serialize/deserialize in JVM. Pickle protocol can be easily extended to support customized class. All the modules are refactored to use this protocol. Known issues: There will be some performance regression (both CPU and memory, the serialized data increased) Author: Davies Liu <davies.liu@gmail.com> Closes #2378 from davies/pickle_mllib and squashes the following commits: dffbba2 [Davies Liu] Merge branch 'master' of github.com:apache/spark into pickle_mllib 810f97f [Davies Liu] fix equal of matrix 032cd62 [Davies Liu] add more type check and conversion for user_product bd738ab [Davies Liu] address comments e431377 [Davies Liu] fix cache of rdd, refactor 19d0967 [Davies Liu] refactor Picklers 2511e76 [Davies Liu] cleanup 1fccf1a [Davies Liu] address comments a2cc855 [Davies Liu] fix tests 9ceff73 [Davies Liu] test size of serialized Rating 44e0551 [Davies Liu] fix cache a379a81 [Davies Liu] fix pickle array in python2.7 df625c7 [Davies Liu] Merge commit '154d141' into pickle_mllib 154d141 [Davies Liu] fix autobatchedpickler 44736d7 [Davies Liu] speed up pickling array in Python 2.7 e1d1bfc [Davies Liu] refactor 708dc02 [Davies Liu] fix tests 9dcfb63 [Davies Liu] fix style 88034f0 [Davies Liu] rafactor, address comments 46a501e [Davies Liu] choose batch size automatically df19464 [Davies Liu] memorize the module and class name during pickleing f3506c5 [Davies Liu] Merge branch 'master' into pickle_mllib 722dd96 [Davies Liu] cleanup _common.py 0ee1525 [Davies Liu] remove outdated tests b02e34f [Davies Liu] remove _common.py 84c721d [Davies Liu] Merge branch 'master' into pickle_mllib 4d7963e [Davies Liu] remove muanlly serialization 6d26b03 [Davies Liu] fix tests c383544 [Davies Liu] classification f2a0856 [Davies Liu] mllib/regression d9f691f [Davies Liu] mllib/util cccb8b1 [Davies Liu] mllib/tree 8fe166a [Davies Liu] Merge branch 'pickle' into pickle_mllib aa2287e [Davies Liu] random f1544c4 [Davies Liu] refactor clustering 52d1350 [Davies Liu] use new protocol in mllib/stat b30ef35 [Davies Liu] use pickle to serialize data for mllib/recommendation f44f771 [Davies Liu] enable tests about array 3908f5c [Davies Liu] Merge branch 'master' into pickle c77c87b [Davies Liu] cleanup debugging code 60e4e2f [Davies Liu] support unpickle array.array for Python 2.6
random.py 6.25 KiB
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Python package for random data generation.
"""
from functools import wraps
from pyspark.rdd import RDD
from pyspark.serializers import BatchedSerializer, PickleSerializer
__all__ = ['RandomRDDs', ]
def serialize(f):
@wraps(f)
def func(sc, *a, **kw):
jrdd = f(sc, *a, **kw)
return RDD(sc._jvm.PythonRDD.javaToPython(jrdd), sc,
BatchedSerializer(PickleSerializer(), 1024))
return func
def toArray(f):
@wraps(f)
def func(sc, *a, **kw):
rdd = f(sc, *a, **kw)
return rdd.map(lambda vec: vec.toArray())
return func
class RandomRDDs(object):
"""
Generator methods for creating RDDs comprised of i.i.d samples from
some distribution.
"""
@staticmethod
@serialize
def uniformRDD(sc, size, numPartitions=None, seed=None):
"""
Generates an RDD comprised of i.i.d. samples from the
uniform distribution U(0.0, 1.0).
To transform the distribution in the generated RDD from U(0.0, 1.0)
to U(a, b), use
C{RandomRDDs.uniformRDD(sc, n, p, seed)\
.map(lambda v: a + (b - a) * v)}
>>> x = RandomRDDs.uniformRDD(sc, 100).collect()
>>> len(x)
100
>>> max(x) <= 1.0 and min(x) >= 0.0
True
>>> RandomRDDs.uniformRDD(sc, 100, 4).getNumPartitions()
4
>>> parts = RandomRDDs.uniformRDD(sc, 100, seed=4).getNumPartitions()
>>> parts == sc.defaultParallelism
True
"""
return sc._jvm.PythonMLLibAPI().uniformRDD(sc._jsc, size, numPartitions, seed)
@staticmethod
@serialize
def normalRDD(sc, size, numPartitions=None, seed=None):
"""
Generates an RDD comprised of i.i.d. samples from the standard normal
distribution.
To transform the distribution in the generated RDD from standard normal
to some other normal N(mean, sigma^2), use
C{RandomRDDs.normal(sc, n, p, seed)\
.map(lambda v: mean + sigma * v)}
>>> x = RandomRDDs.normalRDD(sc, 1000, seed=1L)
>>> stats = x.stats()
>>> stats.count()
1000L
>>> abs(stats.mean() - 0.0) < 0.1
True
>>> abs(stats.stdev() - 1.0) < 0.1
True
"""
return sc._jvm.PythonMLLibAPI().normalRDD(sc._jsc, size, numPartitions, seed)
@staticmethod
@serialize
def poissonRDD(sc, mean, size, numPartitions=None, seed=None):
"""
Generates an RDD comprised of i.i.d. samples from the Poisson
distribution with the input mean.
>>> mean = 100.0
>>> x = RandomRDDs.poissonRDD(sc, mean, 1000, seed=1L)
>>> stats = x.stats()
>>> stats.count()
1000L
>>> abs(stats.mean() - mean) < 0.5
True
>>> from math import sqrt
>>> abs(stats.stdev() - sqrt(mean)) < 0.5
True
"""
return sc._jvm.PythonMLLibAPI().poissonRDD(sc._jsc, mean, size, numPartitions, seed)
@staticmethod
@toArray
@serialize
def uniformVectorRDD(sc, numRows, numCols, numPartitions=None, seed=None):
"""
Generates an RDD comprised of vectors containing i.i.d. samples drawn
from the uniform distribution U(0.0, 1.0).
>>> import numpy as np
>>> mat = np.matrix(RandomRDDs.uniformVectorRDD(sc, 10, 10).collect())
>>> mat.shape
(10, 10)
>>> mat.max() <= 1.0 and mat.min() >= 0.0
True
>>> RandomRDDs.uniformVectorRDD(sc, 10, 10, 4).getNumPartitions()
4
"""
return sc._jvm.PythonMLLibAPI() \
.uniformVectorRDD(sc._jsc, numRows, numCols, numPartitions, seed)
@staticmethod
@toArray
@serialize
def normalVectorRDD(sc, numRows, numCols, numPartitions=None, seed=None):
"""
Generates an RDD comprised of vectors containing i.i.d. samples drawn
from the standard normal distribution.
>>> import numpy as np
>>> mat = np.matrix(RandomRDDs.normalVectorRDD(sc, 100, 100, seed=1L).collect())
>>> mat.shape
(100, 100)
>>> abs(mat.mean() - 0.0) < 0.1
True
>>> abs(mat.std() - 1.0) < 0.1
True
"""
return sc._jvm.PythonMLLibAPI() \
.normalVectorRDD(sc._jsc, numRows, numCols, numPartitions, seed)
@staticmethod
@toArray
@serialize
def poissonVectorRDD(sc, mean, numRows, numCols, numPartitions=None, seed=None):
"""
Generates an RDD comprised of vectors containing i.i.d. samples drawn
from the Poisson distribution with the input mean.
>>> import numpy as np
>>> mean = 100.0
>>> rdd = RandomRDDs.poissonVectorRDD(sc, mean, 100, 100, seed=1L)
>>> mat = np.mat(rdd.collect())
>>> mat.shape
(100, 100)
>>> abs(mat.mean() - mean) < 0.5
True
>>> from math import sqrt
>>> abs(mat.std() - sqrt(mean)) < 0.5
True
"""
return sc._jvm.PythonMLLibAPI() \
.poissonVectorRDD(sc._jsc, mean, numRows, numCols, numPartitions, seed)
def _test():
import doctest
from pyspark.context import SparkContext
globs = globals().copy()
# The small batch size here ensures that we see multiple batches,
# even in these small test examples:
globs['sc'] = SparkContext('local[2]', 'PythonTest', batchSize=2)
(failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
globs['sc'].stop()
if failure_count:
exit(-1)
if __name__ == "__main__":
_test()