-
Joseph K. Bradley authored
* Add GradientBoostedTrees Python examples to ML guide * I ran these in the pyspark shell, and they worked. * Add save/load to examples in ML guide * Added note to python docs about predict,transform not working within RDD actions,transformations in some cases (See SPARK-5981) CC: mengxr Author: Joseph K. Bradley <joseph@databricks.com> Closes #4750 from jkbradley/SPARK-5974 and squashes the following commits: c410e38 [Joseph K. Bradley] Added note to LabeledPoint about attributes bcae18b [Joseph K. Bradley] Added import of models for save/load examples in ml guide. Fixed line length for tree.py, feature.py (but not other ML Pyspark files yet). 6d81c3e [Joseph K. Bradley] completed python GBT examples 9903309 [Joseph K. Bradley] Added note to python docs about predict,transform not working within RDD actions,transformations in some cases c7dfad8 [Joseph K. Bradley] Added model save/load to ML guide. Added GBT examples to ML guide
Joseph K. Bradley authored* Add GradientBoostedTrees Python examples to ML guide * I ran these in the pyspark shell, and they worked. * Add save/load to examples in ML guide * Added note to python docs about predict,transform not working within RDD actions,transformations in some cases (See SPARK-5981) CC: mengxr Author: Joseph K. Bradley <joseph@databricks.com> Closes #4750 from jkbradley/SPARK-5974 and squashes the following commits: c410e38 [Joseph K. Bradley] Added note to LabeledPoint about attributes bcae18b [Joseph K. Bradley] Added import of models for save/load examples in ml guide. Fixed line length for tree.py, feature.py (but not other ML Pyspark files yet). 6d81c3e [Joseph K. Bradley] completed python GBT examples 9903309 [Joseph K. Bradley] Added note to python docs about predict,transform not working within RDD actions,transformations in some cases c7dfad8 [Joseph K. Bradley] Added model save/load to ML guide. Added GBT examples to ML guide
mllib-classification-regression.md 1.71 KiB
layout: global
title: Classification and Regression - MLlib
displayTitle: <a href="mllib-guide.html">MLlib</a> - Classification and Regression
MLlib supports various methods for binary classification, multiclass classification, and regression analysis. The table below outlines the supported algorithms for each type of problem.
Problem Type | Supported Methods |
---|---|
Binary Classification | linear SVMs, logistic regression, decision trees, random forests, gradient-boosted trees, naive Bayes |
Multiclass Classification | decision trees, random forests, naive Bayes |
Regression | linear least squares, Lasso, ridge regression, decision trees, random forests, gradient-boosted trees, isotonic regression |
More details for these methods can be found here: