-
Xiangrui Meng authored
We should standardize the text format used to represent vectors and labeled points. The proposed formats are the following: 1. dense vector: `[v0,v1,..]` 2. sparse vector: `(size,[i0,i1],[v0,v1])` 3. labeled point: `(label,vector)` where "(..)" indicates a tuple and "[...]" indicate an array. `loadLabeledPoints` is added to pyspark's `MLUtils`. I didn't add `loadVectors` to pyspark because `RDD.saveAsTextFile` cannot stringify dense vectors in the proposed format automatically. `MLUtils#saveLabeledData` and `MLUtils#loadLabeledData` are deprecated. Users should use `RDD#saveAsTextFile` and `MLUtils#loadLabeledPoints` instead. In Scala, `MLUtils#loadLabeledPoints` is compatible with the format used by `MLUtils#loadLabeledData`. CC: @mateiz, @srowen Author: Xiangrui Meng <meng@databricks.com> Closes #685 from mengxr/labeled-io and squashes the following commits: 2d1116a [Xiangrui Meng] make loadLabeledData/saveLabeledData deprecated since 1.0.1 297be75 [Xiangrui Meng] change LabeledPoint.parse to LabeledPointParser.parse to maintain binary compatibility d6b1473 [Xiangrui Meng] Merge branch 'master' into labeled-io 56746ea [Xiangrui Meng] replace # by . 623a5f0 [Xiangrui Meng] merge master f06d5ba [Xiangrui Meng] add docs and minor updates 640fe0c [Xiangrui Meng] throw SparkException 5bcfbc4 [Xiangrui Meng] update test to add scientific notations e86bf38 [Xiangrui Meng] remove NumericTokenizer 050fca4 [Xiangrui Meng] use StringTokenizer 6155b75 [Xiangrui Meng] merge master f644438 [Xiangrui Meng] remove parse methods based on eval from pyspark a41675a [Xiangrui Meng] python loadLabeledPoint uses Scala's implementation ce9a475 [Xiangrui Meng] add deserialize_labeled_point to pyspark with tests e9fcd49 [Xiangrui Meng] add serializeLabeledPoint and tests aea4ae3 [Xiangrui Meng] minor updates 810d6df [Xiangrui Meng] update tokenizer/parser implementation 7aac03a [Xiangrui Meng] remove Scala parsers c1885c1 [Xiangrui Meng] add headers and minor changes b0c50cb [Xiangrui Meng] add customized parser d731817 [Xiangrui Meng] style update 63dc396 [Xiangrui Meng] add loadLabeledPoints to pyspark ea122b5 [Xiangrui Meng] Merge branch 'master' into labeled-io cd6c78f [Xiangrui Meng] add __str__ and parse to LabeledPoint a7a178e [Xiangrui Meng] add stringify to pyspark's Vectors 5c2dbfa [Xiangrui Meng] add parse to pyspark's Vectors 7853f88 [Xiangrui Meng] update pyspark's SparseVector.__str__ e761d32 [Xiangrui Meng] make LabelPoint.parse compatible with the dense format used before v1.0 and deprecate loadLabeledData and saveLabeledData 9e63a02 [Xiangrui Meng] add loadVectors and loadLabeledPoints 19aa523 [Xiangrui Meng] update toString and add parsers for Vectors and LabeledPoint
Xiangrui Meng authoredWe should standardize the text format used to represent vectors and labeled points. The proposed formats are the following: 1. dense vector: `[v0,v1,..]` 2. sparse vector: `(size,[i0,i1],[v0,v1])` 3. labeled point: `(label,vector)` where "(..)" indicates a tuple and "[...]" indicate an array. `loadLabeledPoints` is added to pyspark's `MLUtils`. I didn't add `loadVectors` to pyspark because `RDD.saveAsTextFile` cannot stringify dense vectors in the proposed format automatically. `MLUtils#saveLabeledData` and `MLUtils#loadLabeledData` are deprecated. Users should use `RDD#saveAsTextFile` and `MLUtils#loadLabeledPoints` instead. In Scala, `MLUtils#loadLabeledPoints` is compatible with the format used by `MLUtils#loadLabeledData`. CC: @mateiz, @srowen Author: Xiangrui Meng <meng@databricks.com> Closes #685 from mengxr/labeled-io and squashes the following commits: 2d1116a [Xiangrui Meng] make loadLabeledData/saveLabeledData deprecated since 1.0.1 297be75 [Xiangrui Meng] change LabeledPoint.parse to LabeledPointParser.parse to maintain binary compatibility d6b1473 [Xiangrui Meng] Merge branch 'master' into labeled-io 56746ea [Xiangrui Meng] replace # by . 623a5f0 [Xiangrui Meng] merge master f06d5ba [Xiangrui Meng] add docs and minor updates 640fe0c [Xiangrui Meng] throw SparkException 5bcfbc4 [Xiangrui Meng] update test to add scientific notations e86bf38 [Xiangrui Meng] remove NumericTokenizer 050fca4 [Xiangrui Meng] use StringTokenizer 6155b75 [Xiangrui Meng] merge master f644438 [Xiangrui Meng] remove parse methods based on eval from pyspark a41675a [Xiangrui Meng] python loadLabeledPoint uses Scala's implementation ce9a475 [Xiangrui Meng] add deserialize_labeled_point to pyspark with tests e9fcd49 [Xiangrui Meng] add serializeLabeledPoint and tests aea4ae3 [Xiangrui Meng] minor updates 810d6df [Xiangrui Meng] update tokenizer/parser implementation 7aac03a [Xiangrui Meng] remove Scala parsers c1885c1 [Xiangrui Meng] add headers and minor changes b0c50cb [Xiangrui Meng] add customized parser d731817 [Xiangrui Meng] style update 63dc396 [Xiangrui Meng] add loadLabeledPoints to pyspark ea122b5 [Xiangrui Meng] Merge branch 'master' into labeled-io cd6c78f [Xiangrui Meng] add __str__ and parse to LabeledPoint a7a178e [Xiangrui Meng] add stringify to pyspark's Vectors 5c2dbfa [Xiangrui Meng] add parse to pyspark's Vectors 7853f88 [Xiangrui Meng] update pyspark's SparseVector.__str__ e761d32 [Xiangrui Meng] make LabelPoint.parse compatible with the dense format used before v1.0 and deprecate loadLabeledData and saveLabeledData 9e63a02 [Xiangrui Meng] add loadVectors and loadLabeledPoints 19aa523 [Xiangrui Meng] update toString and add parsers for Vectors and LabeledPoint
linalg.py 9.06 KiB
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
MLlib utilities for linear algebra. For dense vectors, MLlib
uses the NumPy C{array} type, so you can simply pass NumPy arrays
around. For sparse vectors, users can construct a L{SparseVector}
object from MLlib or pass SciPy C{scipy.sparse} column vectors if
SciPy is available in their environment.
"""
from numpy import array, array_equal, ndarray, float64, int32
class SparseVector(object):
"""
A simple sparse vector class for passing data to MLlib. Users may
alternatively pass SciPy's {scipy.sparse} data types.
"""
def __init__(self, size, *args):
"""
Create a sparse vector, using either a dictionary, a list of
(index, value) pairs, or two separate arrays of indices and
values (sorted by index).
@param size: Size of the vector.
@param args: Non-zero entries, as a dictionary, list of tupes,
or two sorted lists containing indices and values.
>>> print SparseVector(4, {1: 1.0, 3: 5.5})
(4,[1,3],[1.0,5.5])
>>> print SparseVector(4, [(1, 1.0), (3, 5.5)])
(4,[1,3],[1.0,5.5])
>>> print SparseVector(4, [1, 3], [1.0, 5.5])
(4,[1,3],[1.0,5.5])
"""
self.size = int(size)
assert 1 <= len(args) <= 2, "must pass either 2 or 3 arguments"
if len(args) == 1:
pairs = args[0]
if type(pairs) == dict:
pairs = pairs.items()
pairs = sorted(pairs)
self.indices = array([p[0] for p in pairs], dtype=int32)
self.values = array([p[1] for p in pairs], dtype=float64)
else:
assert len(args[0]) == len(args[1]), "index and value arrays not same length"
self.indices = array(args[0], dtype=int32)
self.values = array(args[1], dtype=float64)
for i in xrange(len(self.indices) - 1):
if self.indices[i] >= self.indices[i + 1]:
raise TypeError("indices array must be sorted")
def dot(self, other):
"""
Dot product with a SparseVector or 1- or 2-dimensional Numpy array.
>>> a = SparseVector(4, [1, 3], [3.0, 4.0])
>>> a.dot(a)
25.0
>>> a.dot(array([1., 2., 3., 4.]))
22.0
>>> b = SparseVector(4, [2, 4], [1.0, 2.0])
>>> a.dot(b)
0.0
>>> a.dot(array([[1, 1], [2, 2], [3, 3], [4, 4]]))
array([ 22., 22.])
"""
if type(other) == ndarray:
if other.ndim == 1:
result = 0.0
for i in xrange(len(self.indices)):
result += self.values[i] * other[self.indices[i]]
return result
elif other.ndim == 2:
results = [self.dot(other[:, i]) for i in xrange(other.shape[1])]
return array(results)
else:
raise Exception("Cannot call dot with %d-dimensional array" % other.ndim)
else:
result = 0.0
i, j = 0, 0
while i < len(self.indices) and j < len(other.indices):
if self.indices[i] == other.indices[j]:
result += self.values[i] * other.values[j]
i += 1
j += 1
elif self.indices[i] < other.indices[j]:
i += 1
else:
j += 1
return result
def squared_distance(self, other):
"""
Squared distance from a SparseVector or 1-dimensional NumPy array.
>>> a = SparseVector(4, [1, 3], [3.0, 4.0])
>>> a.squared_distance(a)
0.0
>>> a.squared_distance(array([1., 2., 3., 4.]))
11.0
>>> b = SparseVector(4, [2, 4], [1.0, 2.0])
>>> a.squared_distance(b)
30.0
>>> b.squared_distance(a)
30.0
"""
if type(other) == ndarray:
if other.ndim == 1:
result = 0.0
j = 0 # index into our own array
for i in xrange(other.shape[0]):
if j < len(self.indices) and self.indices[j] == i:
diff = self.values[j] - other[i]
result += diff * diff
j += 1
else:
result += other[i] * other[i]
return result
else:
raise Exception("Cannot call squared_distance with %d-dimensional array" %
other.ndim)
else:
result = 0.0
i, j = 0, 0
while i < len(self.indices) and j < len(other.indices):
if self.indices[i] == other.indices[j]:
diff = self.values[i] - other.values[j]
result += diff * diff
i += 1
j += 1
elif self.indices[i] < other.indices[j]:
result += self.values[i] * self.values[i]
i += 1
else:
result += other.values[j] * other.values[j]
j += 1
while i < len(self.indices):
result += self.values[i] * self.values[i]
i += 1
while j < len(other.indices):
result += other.values[j] * other.values[j]
j += 1
return result
def __str__(self):
inds = "[" + ",".join([str(i) for i in self.indices]) + "]"
vals = "[" + ",".join([str(v) for v in self.values]) + "]"
return "(" + ",".join((str(self.size), inds, vals)) + ")"
def __repr__(self):
inds = self.indices
vals = self.values
entries = ", ".join(["{0}: {1}".format(inds[i], vals[i]) for i in xrange(len(inds))])
return "SparseVector({0}, {{{1}}})".format(self.size, entries)
def __eq__(self, other):
"""
Test SparseVectors for equality.
>>> v1 = SparseVector(4, [(1, 1.0), (3, 5.5)])
>>> v2 = SparseVector(4, [(1, 1.0), (3, 5.5)])
>>> v1 == v2
True
>>> v1 != v2
False
"""
return (isinstance(other, self.__class__)
and other.size == self.size
and array_equal(other.indices, self.indices)
and array_equal(other.values, self.values))
def __ne__(self, other):
return not self.__eq__(other)
class Vectors(object):
"""
Factory methods for working with vectors. Note that dense vectors
are simply represented as NumPy array objects, so there is no need
to covert them for use in MLlib. For sparse vectors, the factory
methods in this class create an MLlib-compatible type, or users
can pass in SciPy's C{scipy.sparse} column vectors.
"""
@staticmethod
def sparse(size, *args):
"""
Create a sparse vector, using either a dictionary, a list of
(index, value) pairs, or two separate arrays of indices and
values (sorted by index).
@param size: Size of the vector.
@param args: Non-zero entries, as a dictionary, list of tupes,
or two sorted lists containing indices and values.
>>> print Vectors.sparse(4, {1: 1.0, 3: 5.5})
(4,[1,3],[1.0,5.5])
>>> print Vectors.sparse(4, [(1, 1.0), (3, 5.5)])
(4,[1,3],[1.0,5.5])
>>> print Vectors.sparse(4, [1, 3], [1.0, 5.5])
(4,[1,3],[1.0,5.5])
"""
return SparseVector(size, *args)
@staticmethod
def dense(elements):
"""
Create a dense vector of 64-bit floats from a Python list. Always
returns a NumPy array.
>>> Vectors.dense([1, 2, 3])
array([ 1., 2., 3.])
"""
return array(elements, dtype=float64)
@staticmethod
def stringify(vector):
"""
Converts a vector into a string, which can be recognized by
Vectors.parse().
>>> Vectors.stringify(Vectors.sparse(2, [1], [1.0]))
'(2,[1],[1.0])'
>>> Vectors.stringify(Vectors.dense([0.0, 1.0]))
'[0.0,1.0]'
"""
if type(vector) == SparseVector:
return str(vector)
else:
return "[" + ",".join([str(v) for v in vector]) + "]"
def _test():
import doctest
(failure_count, test_count) = doctest.testmod(optionflags=doctest.ELLIPSIS)
if failure_count:
exit(-1)
if __name__ == "__main__":
_test()