Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
cs598mp-fall2021-proj
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Model registry
Analyze
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
chsieh16
cs598mp-fall2021-proj
Commits
b8798a30
Commit
b8798a30
authored
2 years ago
by
aastorg2
Browse files
Options
Downloads
Patches
Plain Diff
finished teacher learner interface for agbot case study
parent
219b84fd
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
dtree_synth_agbot.py
+144
-32
144 additions, 32 deletions
dtree_synth_agbot.py
with
144 additions
and
32 deletions
dtree_synth_agbot.py
+
144
−
32
View file @
b8798a30
...
...
@@ -35,50 +35,162 @@ def load_examples_from_npz(file_name: str, teacher:AgBotTeacher, partition):
bound_list
=
list
(
list
(
zip
(
x_arr
[:
-
1
],
x_arr
[
1
:]))
for
x_arr
in
partition
)
ret
=
{
part
:
[[],
[],
0
]
for
part
in
itertools
.
product
(
*
bound_list
)}
print
(
teacher
.
is_positive_example
(
data_5d
[
0
]))
exit
(
0
)
num_excl_samples
=
0
for
dpoint
in
data_5d
:
x
,
y
,
theta
=
dpoint
[
0
],
dpoint
[
1
],
dpoint
[
2
]
#print(x,y,tetha)
#print(dpoint)
vehicle_state
=
dpoint
[
0
:
teacher
.
state_dim
]
part
=
search_part
(
partition
,
vehicle_state
)
if
part
is
None
:
num_excl_samples
+=
1
continue
if
np
.
any
(
np
.
isnan
(
dpoint
)):
ret
[
part
][
2
]
+=
1
elif
teacher
.
is_safe_state
(
dpoint
):
ret
[
part
][
0
].
append
(
dpoint
)
else
:
ret
[
part
][
1
].
append
(
dpoint
)
#print(dpoint)
print
(
"
# samples not in any selected parts:
"
,
num_excl_samples
)
return
ret
def
synth_dtree
(
learner
:
Learner
,
teacher
:
AgBotTeacher
,
num_max_iterations
:
int
=
10
):
past_candidate_list
=
[]
for
k
in
range
(
num_max_iterations
):
print
(
"
=
"
*
80
)
print
(
f
"
Iteration
{
k
}
:
"
,
sep
=
''
)
print
(
"
learning ....
"
)
candidate
=
learner
.
learn
()
print
(
"
done learning
"
)
print
(
f
"
candidate:
{
candidate
}
"
)
past_candidate_list
.
append
(
candidate
)
# QUERYING TEACHER IF THERE ARE NEGATIVE EXAMPLES
result
=
teacher
.
check
(
candidate
)
print
(
f
"
Satisfiability:
{
result
}
"
)
if
result
==
z3
.
sat
:
negative_examples
=
teacher
.
model
()
assert
len
(
negative_examples
)
>
0
print
(
f
"
negative examples:
{
negative_examples
}
"
)
# assert validate_cexs(teacher.state_dim, teacher.perc_dim, candidate, negative_examples)
learner
.
add_negative_examples
(
*
negative_examples
)
continue
elif
result
==
z3
.
unsat
:
print
(
"
we are done!
"
)
return
True
,
(
k
,
z3
.
simplify
(
candidate
,
arith_lhs
=
True
).
sexpr
())
else
:
return
False
,
f
"
Reason Unknown
{
teacher
.
reason_unknown
()
}
"
return
False
,
f
"
Reached max iteration
{
num_max_iterations
}
.
"
with
open
(
file_name
,
"
rb
"
)
as
pickle_file_io
:
pkl_data
=
pickle
.
load
(
pickle_file_io
)
truth_samples_seq
=
pkl_data
[
"
truth_samples
"
]
# Convert from sampled states and percepts to positive and negative examples for learning
pos_exs
,
neg_exs
,
num_excl_exs
=
[],
[],
0
for
_
,
ss
in
truth_samples_seq
:
for
s
in
ss
:
if
np
.
any
(
np
.
isnan
(
s
)):
num_excl_exs
+=
1
elif
spec
(
s
):
pos_exs
.
append
(
s
)
else
:
neg_exs
.
append
(
s
)
print
(
"
# Excluded NaN examples:
"
,
num_excl_exs
)
return
pos_exs
,
neg_exs
if
__name__
==
"
__main__
"
:
NPZ_FILE_PATH
=
"
data/perceptor-agbot-collect_images_2021-10-29-01-37-44-0.0-50.0.npz
"
# Partitions on prestate
X_LIM
=
np
.
inf
X_ARR
=
np
.
array
([
-
X_LIM
,
X_LIM
])
Y_LIM
=
1
.2
NUM_Y_PARTS
=
4
Y_ARR
=
np
.
linspace
(
-
Y_LIM
,
Y_LIM
,
NUM_Y_PARTS
+
1
)
YAW_LIM
=
np
.
pi
/
12
PRE_
Y_LIM
=
0
.2
28
NUM_Y_PARTS
=
10
Y_ARR
=
np
.
linspace
(
-
PRE_
Y_LIM
,
PRE_
Y_LIM
,
NUM_Y_PARTS
+
1
)
#temp = np.round(Y_ARR, decimals=4)
PRE_
YAW_LIM
=
np
.
pi
/
6
NUM_YAW_PARTS
=
10
YAW_ARR
=
np
.
linspace
(
-
YAW_LIM
,
YAW_LIM
,
NUM_YAW_PARTS
+
1
)
YAW_ARR
=
np
.
linspace
(
-
PRE_
YAW_LIM
,
PRE_
YAW_LIM
,
NUM_YAW_PARTS
+
1
)
PARTITION
=
(
X_ARR
,
Y_ARR
,
YAW_ARR
)
NUM_MAX_ITER
=
500
FEATURE_DOMAIN
=
"
concat
"
ULT_BOUND
=
0.0
NORM_ORD
=
1
teacher
=
AgBotTeacher
(
norm_ord
=
NORM_ORD
,
ultimate_bound
=
ULT_BOUND
)
part_to_examples
=
load_examples_from_npz
(
NPZ_FILE_PATH
,
teacher
,
PARTITION
)
# Print statistics about training data points
print
(
"
#
"
*
80
)
print
(
"
Parts with unsafe data points:
"
)
for
i
,
(
part
,
(
safe_dps
,
unsafe_dps
,
num_nan
))
in
enumerate
(
part_to_examples
.
items
()):
lb
,
ub
=
np
.
asfarray
(
part
).
T
lb
[
2
]
=
np
.
rad2deg
(
lb
[
2
])
ub
[
2
]
=
np
.
rad2deg
(
ub
[
2
])
if
len
(
unsafe_dps
)
>
0
:
print
(
f
"
Part Index
{
i
}
:
"
,
f
"
y in [
{
lb
[
1
]
:
.
03
}
,
{
ub
[
1
]
:
.
03
}
] (m);
"
,
f
"
θ in [
{
lb
[
2
]
:
.
03
}
,
{
ub
[
2
]
:
.
03
}
] (deg);
"
,
f
"
# safe:
{
len
(
safe_dps
)
}
"
,
f
"
# unsafe:
{
len
(
unsafe_dps
)
:
03
}
"
,
f
"
# NaN:
{
num_nan
}
"
)
main_teacher
=
AgBotTeacher
()
load_examples_from_npz
(
NPZ_FILE_PATH
,
main_teacher
,
PARTITION
)
result
=
[]
for
i
,
(
part
,
(
safe_dps
,
unsafe_dps
,
num_nan
))
in
enumerate
(
part_to_examples
.
items
()):
#if not i == 1:
# continue
# if a partition has zero positive datapoints, then skip the partion
if
len
(
safe_dps
)
==
0
:
continue
if
len
(
safe_dps
)
==
17
:
print
()
print
(
"
#
"
*
80
)
print
(
f
"
# safe:
{
len
(
safe_dps
)
}
;
"
f
"
# unsafe:
{
len
(
unsafe_dps
)
}
;
"
f
"
# NaN:
{
num_nan
}
"
)
lb
,
ub
=
np
.
asfarray
(
part
).
T
teacher
=
AgBotTeacher
(
norm_ord
=
NORM_ORD
,
ultimate_bound
=
ULT_BOUND
)
teacher
.
set_old_state_bound
(
lb
=
lb
,
ub
=
ub
)
learner
=
Learner
(
state_dim
=
teacher
.
state_dim
,
perc_dim
=
teacher
.
perc_dim
,
timeout
=
20000
)
learner
.
set_grammar
([(
AgBotTeacher
.
PERC_GT
,
np
.
zeros
(
2
))],
FEATURE_DOMAIN
)
learner
.
add_positive_examples
(
*
safe_dps
)
learner
.
add_negative_examples
(
*
unsafe_dps
)
try
:
found
,
ret
=
synth_dtree
(
learner
,
teacher
,
num_max_iterations
=
NUM_MAX_ITER
)
print
(
f
"
Found?
{
found
}
"
)
if
found
:
k
,
expr
=
ret
result
.
append
({
"
part
"
:
part
,
"
feature_domain
"
:
FEATURE_DOMAIN
,
"
ultimate_bound
"
:
ULT_BOUND
,
"
status
"
:
"
found
"
,
"
result
"
:
{
"
k
"
:
k
,
"
formula
"
:
expr
}})
else
:
result
.
append
({
"
part
"
:
part
,
"
feature_domain
"
:
FEATURE_DOMAIN
,
"
ultimate_bound
"
:
ULT_BOUND
,
"
status
"
:
"
not found
"
,
"
result
"
:
ret
})
except
KeyboardInterrupt
:
print
(
"
User pressed Ctrl+C. Skip all remaining partition.
"
)
break
# NOTE finally block is executed before break
except
Exception
as
e
:
result
.
append
({
"
part
"
:
part
,
"
status
"
:
"
exception
"
,
"
result
"
:
traceback
.
format_exc
()})
print
(
e
)
finally
:
data_file
=
pathlib
.
Path
(
"
out/pre.data
"
)
data_file
.
rename
(
f
"
out/part-
{
i
:
03
}
-pre.data
"
)
del
teacher
del
learner
with
open
(
f
"
out/dtree_synth.
{
NUM_Y_PARTS
}
x
{
NUM_YAW_PARTS
}
.out.json
"
,
"
w
"
)
as
f
:
json
.
dump
(
result
,
f
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment