Newer
Older
from typing import Any, Dict, List, MutableSet, Tuple
from learner_base import LearnerBase
class DTreeLearner(LearnerBase):
def __init__(self, state_dim: int, perc_dim: int,
timeout: int = 10000) -> None:
super().__init__()
self.debug_neg_conc = set() # type: MutableSet[Tuple[float,...]]
self.debug_neg_perc = set() # type: MutableSet[Tuple[float,...]]
self._state_dim: int = state_dim
self._perc_dim: int = perc_dim
self.count_neg_dup = 0
# Given a base or derived feature name,
# returns a mapping from base feature names to coefficients
self._var_coeff_map: Dict[str, Dict[str, int]] = {}
# Given a base feature name,
# this map returns the affine transformation provided in the grammar
self._basevar_trans_map: Dict[str, Tuple[Any, int]] = {}
# check directory name exists, if not create it.
self.dir_name = "out"
if not os.path.isdir(self.dir_name):
path_prefix = self.dir_name+"/pre"
self.data_file = path_prefix + ".data"
self.names_file = path_prefix + ".names"
self.tree_out = path_prefix + ".json"
# create empty data files or truncate existing data in files
self.exec = f'c50exact/c5.0dbg -I 1 -m 1 -f {path_prefix}'
@property
def state_dim(self) -> int:
return self._state_dim
@property
def perc_dim(self) -> int:
return self._perc_dim
def set_grammar(self, grammar) -> None:
derived_feature_map: Dict[str, Tuple[Dict, str]] = OrderedDict()
for i, trans in enumerate(grammar):
construct_sample_to_feature_func(*trans))
ith_vars = [f"fvar{j}_A{i}" for j in range(self.perc_dim)]
self._basevar_trans_map.update([(var, (trans, j)) for j, var in enumerate(ith_vars)])
base_features.extend(ith_vars)
derived_feature_map.update(
self._generate_derived_features(ith_vars))
# Store mapping from all feature names to coefficients of base features
self._var_coeff_map.update([
(var, {var: 1}) for var in base_features
])
self._var_coeff_map.update([
(var, coeff_map) for var, (coeff_map, _) in derived_feature_map.items()
])
# One sample to feature vector function for many linear transformations
self._s2f_func = self._compose_s2f_functions(s2f_func_list)
# Write names file
file_lines = ["precondition."] + \
[f"{var}: continuous." for var in base_features] + \
[f"{var} := {expr}." for var, (_, expr) in derived_feature_map.items()] + \
["precondition: true, false."]
with open(self.names_file, "w") as f:
f.write('\n'.join(file_lines))
@staticmethod
def _compose_s2f_functions(s2f_func_list):
def composed_func(sample):
return sum((list(f(sample)) for f in s2f_func_list), [])
return composed_func
@staticmethod
def _generate_derived_features(
base_vars: List[str], k: int = 2) -> List[Tuple[str, Tuple[Any, str]]]:
res = []
for var in base_vars:
var_coeff_map = {var: -1}
expr = f"(-1*{var})"
name = expr
res.append((name, (var_coeff_map, expr)))
coeff_combinations = list(itertools.product([1, -1], repeat=k))
var_id_iter = range(len(base_vars))
for selected_var_ids in itertools.combinations(var_id_iter, k):
for coeff in coeff_combinations:
var_coeff_map = {base_vars[i]: c
for c, i in zip(coeff, selected_var_ids)}
expr = " + ".join(f"({c}*{base_vars[i]})"
for c, i in zip(coeff, selected_var_ids))
name = f"({expr})"
res.append((name, (var_coeff_map, expr)))
return res
def add_implication_examples(self, *args) -> None:
return super().add_implication_examples(*args)
def add_positive_examples(self, *args) -> None:
feature_vec_list = [self._s2f_func(sample) for sample in args]
self._append_to_data_file(feature_vec_list, "true")
def add_negative_examples(self, *args) -> None:
for samp in args:
if samp in self.debug_neg_conc:
self.count_neg_dup += 1
raise ValueError("repeated negative example: " + str(samp))
if perc_samp in self.debug_neg_perc:
raise ValueError("repeated negative example: " + str(perc_samp))
self.debug_neg_perc.add(perc_samp)
print(f"number of negative duplicate {self.count_neg_dup}")
feature_vec_list = [self._s2f_func(sample) for sample in args]
print("Negative feature vectors:", feature_vec_list)
self._append_to_data_file(feature_vec_list, "false")
def _append_to_data_file(self, feature_vec_list, label: str):
with open(self.data_file, 'a') as d_file:
data_out = csv.writer(d_file)
for f in feature_vec_list:
row = itertools.chain(f, [label]) # append label at the end of each row
data_out.writerow(row)
def learn(self) -> z3.BoolRef:
assert os.path.exists(self.tree_out), "if learned successfully" \
f"there should be a json file in {self.dir_name}"
ite_expr = self.get_pre_from_json(self.tree_out)
os.remove(self.tree_out) # Remove the generated json to avoid reusing old trees
ite_expr = self._subs_basevar_w_states(ite_expr)
return ite_expr
def _subs_basevar_w_states(self, ite_expr) -> z3.BoolRef:
state_vars = z3.Reals([f"x_{i}" for i in range(self.state_dim)])
perc_vars = z3.Reals([f"z_{i}" for i in range(self.perc_dim)])
subs_basevar = []
for basevar, (trans, j) in self._basevar_trans_map.items():
a_mat, b_vec = trans
expanded_basevar = perc_vars[j] - ((a_mat @ state_vars)[j] + b_vec[j])
expanded_basevar = z3.simplify(expanded_basevar)
subs_basevar.append((z3.Real(basevar), expanded_basevar))
return z3.substitute(ite_expr, *subs_basevar)
def get_pre_from_json(self, path):
try:
with open(path) as json_file:
tree = json.load(json_file)
except json.JSONDecodeError:
raise ValueError(f"cannot parse {path} as a json file")
def parse_tree(self, tree) -> z3.BoolRef:
if tree['children'] is None:
# At a leaf node, return the clause
if tree['classification']:
return z3.BoolVal(True) # True leaf node
return z3.BoolVal(False) # False leaf node
elif len(tree['children']) == 2:
# Post-order traversal
left = self.parse_tree(tree['children'][0])
right = self.parse_tree(tree['children'][1])
# Create an ITE expression tree
z3_expr = z3.Sum(*(coeff*z3.Real(base_fvar) for base_fvar, coeff
in self._var_coeff_map[tree['attribute']].items()))
z3_cut = z3.simplify(z3.fpToReal(z3.FPVal(tree['cut'], z3.Float64())))
if z3.is_true(left):
if z3.is_true(right):
return z3.BoolVal(True)
elif z3.is_false(right):
return (z3_expr <= z3_cut)
if z3.is_false(left):
if z3.is_true(right):
return (z3_expr > z3_cut)
elif z3.is_false(right):
return z3.BoolVal(False)
# else:
return z3.If((z3_expr <= z3_cut), left, right)
else:
raise ValueError("error parsing the json object as a binary decision tree)")
def construct_sample_to_feature_func(a_mat: np.ndarray, b_vec: np.ndarray):
perc_dim, state_dim = a_mat.shape
def sample_to_feature_vec(sample):
assert len(sample) == state_dim + perc_dim
state = np.array(sample[0: state_dim])
perc = np.array(sample[state_dim: state_dim+perc_dim])
return perc - (a_mat @ state + b_vec)
return sample_to_feature_vec
def test_dtree_learner():
a_mat_0 = np.array([[0., -1., 0.],
[0., 0., -1.]])
b_vec_0 = np.zeros(2)
a_mat_1 = np.array([[0., -0.75, 0.],
[0., 0., -1.25]])
b_vec_1 = np.zeros(2)
learner = DTreeLearner(state_dim=3, perc_dim=2)
learner.set_grammar([(a_mat_0, b_vec_0), (a_mat_1, b_vec_1)])
logging.debug(*learner._basevar_trans_map.items(), sep='\n')
logging.debug(*learner._var_coeff_map.items(), sep='\n')
pos_examples = [
(1., 2., 3., -2., -3.),
(1., 2., 3., -1., -2.)
]
learner.add_positive_examples(*pos_examples)
neg_examples = [
(10., 1.0, 1.0, 0.5, 0.5),
(10., 1.0, 1.0, 1.5, 1.5),
(10., 9.0, 9.0, 5.0, 5.0),
]
learner.add_negative_examples(*neg_examples)
print("Learned ITE expression:", learner.learn())
def test_sample_to_feature():
# tuple
a_mat = np.array([[0., -1., 0.],
[0., 0., -1]])
b_vec = np.zeros(2)
# construct_sample_to_feature_func: returns a function
# map: lin_trans(a_mat and b_vec pair) -> func
sample_to_feature_func = construct_sample_to_feature_func(a_mat, b_vec)
# map = {name1:sample_to_feature_func}
sample = np.array([1., 2., 3., -2., -3.])
# sample_to_feature_func will compute dBar and psiBar
feature_vec = sample_to_feature_func(sample)
assert np.array_equal(feature_vec, np.array([0., 0.]))
sample = np.array([1., 2., 3., -1., -2.])
feature_vec = sample_to_feature_func(sample)
assert np.array_equal(feature_vec, np.array([1., 1.]))
def test_parse_json():
json_obj = json.loads("""
{"attribute":"((1*fvar0_A0) + (1*fvar1_A0))","cut":-0.01,"classification":0,
{"attribute":"fvar1_A0","cut":0.625,"classification":0,
"children":[{"attribute":"","cut":0,"classification":true,"children":null},
{"attribute":"","cut":0,"classification":false,"children":null}]
},
{"attribute":"fvar1_A1","cut":-0.15,"classification":0,
"children":[{"attribute":"","cut":0,"classification":true,"children":null},
{"attribute":"","cut":0,"classification":false,"children":null}]
}
]
}""")
a_mat_0 = np.array([[0., -1., 0.],
[0., 0., -1.]])
b_vec_0 = np.zeros(2)
a_mat_1 = np.array([[0., -0.75, 0.],
[0., 0., -1.25]])
b_vec_1 = np.zeros(2)
learner = DTreeLearner(state_dim=3, perc_dim=2)
learner.set_grammar([(a_mat_0, b_vec_0), (a_mat_1, b_vec_1)])
tree = learner.parse_tree(json_obj)
print(learner._subs_basevar_w_states(tree))
if __name__ == "__main__":