Skip to content
Snippets Groups Projects
dtree_learner.py 11.9 KiB
Newer Older
from collections import OrderedDict
import itertools
import json
import logging
import os
from typing import Any, Dict, List, MutableSet, Tuple

import numpy as np

from learner_base import LearnerBase
class DTreeLearner(LearnerBase):
    def __init__(self, state_dim: int, perc_dim: int,
                 timeout: int = 10000) -> None:
        super().__init__()
        self.debug_neg_conc = set()  # type: MutableSet[Tuple[float,...]]
        self.debug_neg_perc = set()  # type: MutableSet[Tuple[float,...]]
        self._state_dim: int = state_dim
        self._perc_dim: int = perc_dim
        self.count_neg_dup = 0
        self._s2f_func = lambda x: x
        # Given a base or derived feature name,
        # returns a mapping from base feature names to coefficients
        self._var_coeff_map: Dict[str, Dict[str, int]] = {}
        # Given a base feature name,
        # this map returns the affine transformation provided in the grammar
        self._basevar_trans_map: Dict[str, Tuple[Any, int]] = {}
        # check directory name exists, if not create it.
        self.dir_name = "out"
        if not os.path.isdir(self.dir_name):
            os.makedirs(self.dir_name)
        path_prefix = self.dir_name+"/pre"
        self.data_file = path_prefix + ".data"
        self.names_file = path_prefix + ".names"
        self.tree_out = path_prefix + ".json"
        # create empty data files or truncate existing data in files
        open(self.data_file, 'w').close()
        self.exec = f'c50exact/c5.0dbg  -I 1 -m 1 -f {path_prefix}'
    @property
    def state_dim(self) -> int:
        return self._state_dim

    @property
    def perc_dim(self) -> int:
        return self._perc_dim

    def set_grammar(self, grammar) -> None:
        base_features: List[str] = []
        derived_feature_map: Dict[str, Tuple[Dict, str]] = OrderedDict()
        s2f_func_list = []
        for i, trans in enumerate(grammar):
            s2f_func_list.append(
                construct_sample_to_feature_func(*trans))
            ith_vars = [f"fvar{j}_A{i}" for j in range(self.perc_dim)]

            self._basevar_trans_map.update([(var, (trans, j)) for j, var in enumerate(ith_vars)])

            base_features.extend(ith_vars)
            derived_feature_map.update(
                self._generate_derived_features(ith_vars))

        # Store mapping from all feature names to coefficients of base features
        self._var_coeff_map.update([
            (var, {var: 1}) for var in base_features
        ])
        self._var_coeff_map.update([
            (var, coeff_map) for var, (coeff_map, _) in derived_feature_map.items()
        ])

        # One sample to feature vector function for many linear transformations
        self._s2f_func = self._compose_s2f_functions(s2f_func_list)
        file_lines = ["precondition."] + \
            [f"{var}:  continuous." for var in base_features] + \
            [f"{var} := {expr}." for var, (_, expr) in derived_feature_map.items()] + \
            ["precondition:  true, false."]
        with open(self.names_file, "w") as f:
            f.write('\n'.join(file_lines))

    @staticmethod
    def _compose_s2f_functions(s2f_func_list):
        def composed_func(sample):
            return sum((list(f(sample)) for f in s2f_func_list), [])
        return composed_func

    @staticmethod
    def _generate_derived_features(
            base_vars: List[str], k: int = 2) -> List[Tuple[str, Tuple[Any, str]]]:
        res = []
        for var in base_vars:
            var_coeff_map = {var: -1}
            expr = f"(-1*{var})"
            name = expr
            res.append((name, (var_coeff_map, expr)))

        if len(base_vars) < k:
            return res

        coeff_combinations = list(itertools.product([1, -1], repeat=k))
        var_id_iter = range(len(base_vars))
        for selected_var_ids in itertools.combinations(var_id_iter, k):
            for coeff in coeff_combinations:
                var_coeff_map = {base_vars[i]: c
                                 for c, i in zip(coeff, selected_var_ids)}
                expr = " + ".join(f"({c}*{base_vars[i]})"
                                  for c, i in zip(coeff, selected_var_ids))
                name = f"({expr})"
                res.append((name, (var_coeff_map, expr)))
        return res
    def add_implication_examples(self, *args) -> None:
        return super().add_implication_examples(*args)

    def add_positive_examples(self, *args) -> None:
        feature_vec_list = [self._s2f_func(sample) for sample in args]
        self._append_to_data_file(feature_vec_list, "true")

    def add_negative_examples(self, *args) -> None:
        # NOTE the size of nonrepeating_samp_list and nonrepeating_fv_list can be different.
        if len(args) == 0:
            return
        nonrepeating_samp_list = [
            samp for samp in args if samp not in self.debug_neg_conc
        ]
        if len(nonrepeating_samp_list) == 0:
            raise ValueError(f"All negative examples {args} are repeated.")
  
        fv_list = [
            tuple(self._s2f_func(samp)) for samp in nonrepeating_samp_list
        ]
        nonrepeating_fv_list = [
            fv for fv in fv_list if fv not in self.debug_neg_perc
        ]
        if len(nonrepeating_fv_list) == 0:
            raise ValueError(f"All negative feature vectors {fv_list} are repeated.")

        self.debug_neg_perc.update(nonrepeating_fv_list)
        self.debug_neg_conc.update(nonrepeating_samp_list)

        # print(f"number of negative duplicate {self.count_neg_dup}")
        feature_vec_list = [self._s2f_func(sample) for sample in args]

        print("Negative feature vectors:", feature_vec_list)
        self._append_to_data_file(feature_vec_list, "false")

    def _append_to_data_file(self, feature_vec_list, label: str):
        with open(self.data_file, 'a') as d_file:
            data_out = csv.writer(d_file)
            for f in feature_vec_list:
                row = itertools.chain(f, [label])  # append label at the end of each row
                data_out.writerow(row)
    def learn(self) -> z3.BoolRef:
        res = os.popen(self.exec).read()
        assert os.path.exists(self.tree_out), "if learned successfully" \
            f"there should be a json file in {self.dir_name}"

        ite_expr = self.get_pre_from_json(self.tree_out)
        os.remove(self.tree_out)  # Remove the generated json to avoid reusing old trees
        ite_expr = self._subs_basevar_w_states(ite_expr)
        return ite_expr

    def _subs_basevar_w_states(self, ite_expr) -> z3.BoolRef:
        state_vars = z3.Reals([f"x_{i}" for i in range(self.state_dim)])
        perc_vars = z3.Reals([f"z_{i}" for i in range(self.perc_dim)])
        subs_basevar = []
        for basevar, (trans, j) in self._basevar_trans_map.items():
            a_mat, b_vec = trans
            expanded_basevar = perc_vars[j] - ((a_mat @ state_vars)[j] + b_vec[j])
            expanded_basevar = z3.simplify(expanded_basevar)
            subs_basevar.append((z3.Real(basevar), expanded_basevar))
        return z3.substitute(ite_expr, *subs_basevar)
    def get_pre_from_json(self, path):
        try:
            with open(path) as json_file:
                tree = json.load(json_file)
                return self.parse_tree(tree)
        except json.JSONDecodeError:
            raise ValueError(f"cannot parse {path} as a json file")

    def parse_tree(self, tree) -> z3.BoolRef:
        if tree['children'] is None:
            # At a leaf node, return the clause
            if tree['classification']:
                return z3.BoolVal(True)  # True leaf node
                return z3.BoolVal(False)  # False leaf node
        elif len(tree['children']) == 2:
            # Post-order traversal
            left = self.parse_tree(tree['children'][0])
            right = self.parse_tree(tree['children'][1])
            # Create an ITE expression tree
            z3_expr = z3.Sum(*(coeff*z3.Real(base_fvar) for base_fvar, coeff
                               in self._var_coeff_map[tree['attribute']].items()))
            z3_cut = z3.simplify(z3.fpToReal(z3.FPVal(tree['cut'], z3.Float64())))
            if z3.is_true(left):
                if z3.is_true(right):
                    return z3.BoolVal(True)
                elif z3.is_false(right):
                    return (z3_expr <= z3_cut)
            if z3.is_false(left):
                if z3.is_true(right):
                    return (z3_expr > z3_cut)
                elif z3.is_false(right):
                    return z3.BoolVal(False)
            # else:
            return z3.If((z3_expr <= z3_cut), left, right)
        else:
            raise ValueError("error parsing the json object as a binary decision tree)")
def construct_sample_to_feature_func(a_mat: np.ndarray, b_vec: np.ndarray):
    perc_dim, state_dim = a_mat.shape

    def sample_to_feature_vec(sample):
        assert len(sample) == state_dim + perc_dim
        state = np.array(sample[0: state_dim])
        perc = np.array(sample[state_dim: state_dim+perc_dim])
        return perc - (a_mat @ state + b_vec)
    return sample_to_feature_vec

def test_dtree_learner():
    a_mat_0 = np.array([[0., -1., 0.],
                        [0., 0., -1.]])
    b_vec_0 = np.zeros(2)

    a_mat_1 = np.array([[0., -0.75, 0.],
                        [0., 0., -1.25]])
    b_vec_1 = np.zeros(2)

    learner = DTreeLearner(state_dim=3, perc_dim=2)
    learner.set_grammar([(a_mat_0, b_vec_0), (a_mat_1, b_vec_1)])
    logging.debug(*learner._basevar_trans_map.items(), sep='\n')
    logging.debug(*learner._var_coeff_map.items(), sep='\n')

    pos_examples = [
        (1., 2., 3., -2., -3.),
        (1., 2., 3., -1., -2.)
    ]
    learner.add_positive_examples(*pos_examples)
    neg_examples = [
        (10., 1.0, 1.0, 0.5, 0.5),
        (10., 1.0, 1.0, 1.5, 1.5),
        (10., 9.0, 9.0, 5.0, 5.0),
    ]
    learner.add_negative_examples(*neg_examples)

    print("Learned ITE expression:", learner.learn())
def test_sample_to_feature():
    # tuple
    a_mat = np.array([[0., -1., 0.],
                      [0., 0., -1]])
    b_vec = np.zeros(2)

    # construct_sample_to_feature_func: returns a function
    # map: lin_trans(a_mat and b_vec pair) -> func
    sample_to_feature_func = construct_sample_to_feature_func(a_mat, b_vec)

    # map = {name1:sample_to_feature_func}
    sample = np.array([1., 2., 3., -2., -3.])
    # sample_to_feature_func will compute dBar and psiBar
    feature_vec = sample_to_feature_func(sample)
    print("sample: " + str(feature_vec))
    assert np.array_equal(feature_vec, np.array([0., 0.]))

    sample = np.array([1., 2., 3., -1., -2.])
    feature_vec = sample_to_feature_func(sample)
    print("sample: " + str(feature_vec))
    assert np.array_equal(feature_vec, np.array([1., 1.]))

def test_parse_json():
    json_obj = json.loads("""
    {"attribute":"((1*fvar0_A0) + (1*fvar1_A0))","cut":-0.01,"classification":0,
         {"attribute":"fvar1_A0","cut":0.625,"classification":0,
          "children":[{"attribute":"","cut":0,"classification":true,"children":null},
                      {"attribute":"","cut":0,"classification":false,"children":null}]
         },
         {"attribute":"fvar1_A1","cut":-0.15,"classification":0,
          "children":[{"attribute":"","cut":0,"classification":true,"children":null},
                      {"attribute":"","cut":0,"classification":false,"children":null}]
         }
     ]
    }""")
    a_mat_0 = np.array([[0., -1., 0.],
                        [0., 0., -1.]])
    b_vec_0 = np.zeros(2)

    a_mat_1 = np.array([[0., -0.75, 0.],
                        [0., 0., -1.25]])
    b_vec_1 = np.zeros(2)

    learner = DTreeLearner(state_dim=3, perc_dim=2)
    learner.set_grammar([(a_mat_0, b_vec_0), (a_mat_1, b_vec_1)])
    tree = learner.parse_tree(json_obj)
    print(learner._subs_basevar_w_states(tree))


if __name__ == "__main__":
    # test_sample_to_feature()
    test_dtree_learner()