Skip to content
Snippets Groups Projects
Commit ef44688d authored by tgupta6's avatar tgupta6
Browse files

constants gpu1 change

parent 3758e7a5
No related branches found
No related tags found
No related merge requests found
......@@ -418,7 +418,7 @@ class graph_creator():
self.mil_atr_loss += losses.mil_loss(
self.attribute_scores_with_answers[j],
self.plh['positive_attributes_vec_enc'][j],
self.plh['positive_adjectives_vec_enc'][j],
'atr')
self.mil_obj_loss = self.mil_loss_wt*self.mil_obj_loss / self.batch_size
......@@ -690,7 +690,8 @@ class attach_optimizer():
self.learning_rate = tf.train.exponential_decay(
self.lr,
self.global_step,
self.decay_step)
self.decay_step,
self.decay_rate)
self.optimizer = multi_rate_train.MultiRateOptimizer(
tf.train.AdamOptimizer)
......
......@@ -5,7 +5,7 @@ def mkdir_if_not_exists(dir_name):
if not os.path.exists(dir_name):
os.mkdir(dir_name)
experiment_name = 'QA_pretrain_genome_split'
experiment_name = 'obj_atr_through_ans_mil'
#experiment_name = 'object_attribute_classifier_large_images'
# Global output directory (all subexperiments will be saved here)
global_output_dir = '/data/tanmay/GenVQA_Exp_Results'
......@@ -100,11 +100,10 @@ pretrained_vocab_word_vectors_npy = os.path.join(
# Object Attribute Classifier Training Params
region_batch_size = 200
# region_num_samples = num_train_regions
region_num_epochs = 4
region_num_epochs = 20
region_offset = 0
region_queue_size = 400
region_regularization_coeff = 1e-4
region_regularization_coeff = 1e-5
region_lr = 1e-3
region_log_every_n_iter = 500
region_output_dir = os.path.join(
......@@ -180,15 +179,18 @@ vqa_answer_vocab_json = os.path.join(
# num_test_questions = 0
# Answer classifier training params
answer_batch_size = 50
answer_num_epochs = 10
answer_batch_size = 25
answer_num_epochs = 20
answer_offset = 0
answer_obj_atr_loss_wt = 0.0
answer_obj_atr_loss_wt = 1.0
answer_ans_loss_wt = 0.1
answer_mil_loss_wt = 0.2
answer_regularization_coeff = 1e-5
answer_queue_size = 500
answer_embedding_dim = 600
answer_lr = 1e-3
answer_log_every_n_iter = 500
answer_train_from_scratch = True
answer_output_dir = os.path.join(
global_experiment_dir,
'answer_classifiers')
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment