Skip to content
Snippets Groups Projects
Commit aa06cf44 authored by tgupta6's avatar tgupta6
Browse files

Fix gt for relevance for How Many questions

parent a3f5d1d3
No related branches found
No related tags found
No related merge requests found
......@@ -88,31 +88,31 @@ def eval(eval_params):
+ test_set_size - 1)
# Test Recall
test_recall = rel_trainer.evaluate(y_pred, qa_anno_dict,
region_anno_dict, parsed_q_dict,
ans_vocab, vocab,
image_regions_dir, mean_image,
test_start_id, test_set_size,
batch_size, plholder_dict,
75, 75, test_batch_creator,verbose=True)
# test_recall = rel_trainer.evaluate(y_pred, qa_anno_dict,
# region_anno_dict, parsed_q_dict,
# ans_vocab, vocab,
# image_regions_dir, mean_image,
# test_start_id, test_set_size,
# batch_size, plholder_dict,
# 75, 75, test_batch_creator,verbose=True)
# html_dir = os.path.join(outdir,'rel_html')
# test_recall = rel_trainer.evaluate_with_vis(y_pred,
# qa_anno_dict,
# region_anno_dict,
# parsed_q_dict,
# ans_vocab,
# vocab,
# image_regions_dir,
# mean_image,
# test_start_id,
# test_set_size,
# batch_size,
# plholder_dict,
# 75,
# 75,
# test_batch_creator,
# html_dir,
# whole_image_dir,
# verbose=True)
html_dir = os.path.join(outdir,'rel_html')
test_recall = rel_trainer.evaluate_with_vis(y_pred,
qa_anno_dict,
region_anno_dict,
parsed_q_dict,
ans_vocab,
vocab,
image_regions_dir,
mean_image,
test_start_id,
test_set_size,
batch_size,
plholder_dict,
75,
75,
test_batch_creator,
html_dir,
whole_image_dir,
verbose=True)
print('Test Rec: ' + str(test_recall))
......@@ -111,16 +111,8 @@ def rank_regions(image, question, region_coords, region_coords_,
coord_list = []
no_regions_flag = False
if question is not None:
if 'How manys shapes' in question:
if 'How many' in question:
no_regions_flag = True
elif 'How many' in question:
split_question = question.split(" ")
gt_region = split_question[-1]
gt_region = gt_region[2:4]
if gt_region not in gt_regions_for_image:
no_regions_flag = True
else:
coord_list.append(gt_regions_for_image[gt_region])
elif 'What color' in question:
split_question = question.split(" ")
gt_region = split_question[-1]
......@@ -201,7 +193,7 @@ def get_rel_map(image, scores, region_coords):
rel_map[y1-1:y2, x1-1:x2, i] = scores[i]
rel_map = rel_map.max(axis=2)
rel_map = 0.5 + 0.5*rel_map
rel_map = rel_map
return rel_map
......
......@@ -145,12 +145,14 @@ def evaluate_with_vis(region_score_pred,
region_score_pred_eval[j,:],
ans_io_helper.region_coords_)
rel_map_stacked = np.dstack((rel_map, rel_map, rel_map))
image = np.multiply(image, rel_map_stacked) + \
np.multiply(0*image+255, 1-rel_map_stacked)
image_filename = os.path.join(html_dir,
str(image_id) + '_' + \
str(q_id) + '.jpg')
scipy.misc.imsave(image_filename, image)
scipy.misc.imsave(image_filename, image.astype(np.uint8))
col_dict = {
0: q_id,
1: question,
......
......@@ -23,8 +23,8 @@ workflow = {
'train_atr': False,
'eval_atr': False,
'train_rel': False,
'eval_rel': False,
'train_ans': True,
'eval_rel': True,
'train_ans': False,
}
obj_classifier_train_params = {
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment