Skip to content
Snippets Groups Projects
Commit a3ddca67 authored by tgupta6's avatar tgupta6
Browse files

change constants in visualize_relevance and constants_crunchy

parent cc38d8bd
No related branches found
No related tags found
No related merge requests found
......@@ -476,6 +476,7 @@ def create_vqa_batch_generator():
resnet_feat_dim=constants.resnet_feat_dim)
num_train_subset_questions = len(data_mgr.qids)
print num_train_subset_questions
index_generator = tftools.data.random(
constants.answer_batch_size,
......
......@@ -5,7 +5,7 @@ def mkdir_if_not_exists(dir_name):
if not os.path.exists(dir_name):
os.mkdir(dir_name)
experiment_name = 'QA_joint_pretrain_genome_split'
experiment_name = 'object_attribute_classifier_large_images_vqa_split' #'QA_joint_pretrain_genome_split'
# Global output directory (all subexperiments will be saved here)
global_output_dir = '/home/tanmay/Code/GenVQA/Exp_Results/VQA'
......@@ -128,7 +128,7 @@ region_model_accuracies_txt = os.path.join(
'model_accuracies.txt')
# Object Attribute Classifier Evaluation Params
region_eval_on = 'train_subset' # One of {'test','train_held_out','train_subset'}
region_eval_on = 'train_held_out' # One of {'test','train_held_out','train_subset'}
region_model_to_eval = region_model + '-' + '80000'
region_attribute_scores_dirname = os.path.join(
......@@ -189,13 +189,13 @@ vqa_answer_vocab_json = os.path.join(
# Answer classifier training params
answer_batch_size = 50
answer_num_epochs = 4
answer_num_epochs = 6
answer_offset = 0
answer_obj_atr_loss_wt = 0.1
answer_regularization_coeff = 1e-5
answer_queue_size = 500
answer_embedding_dim = 600
answer_lr = 1e-3
answer_lr = 1e-4
answer_log_every_n_iter = 500
answer_output_dir = os.path.join(
global_experiment_dir,
......@@ -220,7 +220,7 @@ answer_fine_tune_from = answer_model + '-' + str(answer_fine_tune_from_iter)
# Answer eval params
answer_eval_on = 'val'
answer_model_to_eval = answer_model + '-18500'
answer_model_to_eval = answer_model + '-42000'
vqa_results_dir = os.path.join(
answer_output_dir,
......@@ -238,7 +238,7 @@ answer_eval_results_json = os.path.join(
# Select best model
models_dir = answer_output_dir
start_model = 1000
start_model = 40000
step_size = 2000
model_accuracies_txt = os.path.join(
answer_output_dir,
......
......@@ -200,13 +200,13 @@ if __name__=='__main__':
'mscoco_val2014_annotations_with_parsed_questions.json')
exp_dir = '/home/tanmay/Code/GenVQA/Exp_Results/VQA/' + \
'QA_explicit_dot_joint_training_pretrained_same_lr/'
'QA_joint_pretrain_genome_split/'
eval_data_json = os.path.join(
exp_dir,
'answer_classifiers/eval_val_rest_data.json')
'answer_classifiers/Results/eval_val_data.json')
output_dir = os.path.join(exp_dir, 'qual_results_val_rest_conf')
output_dir = os.path.join(exp_dir, 'qual_results_val_conf')
if not os.path.exists(output_dir):
os.mkdir(output_dir)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment