Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
G
GenVQA
Manage
Activity
Members
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Model registry
Analyze
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Vision
GenVQA
Commits
8922eafe
Commit
8922eafe
authored
8 years ago
by
tgupta6
Browse files
Options
Downloads
Patches
Plain Diff
local change in crunchy constants and vqa eval code
parent
ad70b50a
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
constants_crunchy.py
+6
-3
6 additions, 3 deletions
constants_crunchy.py
visual_util/visualize_relevance.py
+26
-7
26 additions, 7 deletions
visual_util/visualize_relevance.py
with
32 additions
and
10 deletions
constants_crunchy.py
+
6
−
3
View file @
8922eafe
...
...
@@ -8,7 +8,7 @@ def mkdir_if_not_exists(dir_name):
experiment_name
=
'
QA_explicit_dot_joint_training_pretrained_same_lr
'
#experiment_name = 'object_attribute_classifier_large_images'
# Global output directory (all subexperiments will be saved here)
global_output_dir
=
'
/
data
/tanmay/GenVQA
_
Exp_Results
'
global_output_dir
=
'
/
home
/tanmay/
Code/
GenVQA
/
Exp_Results
/VQA
'
global_experiment_dir
=
os
.
path
.
join
(
global_output_dir
,
...
...
@@ -154,7 +154,10 @@ vqa_answer_vocab_json = os.path.join(
# VQA dataset params
num_train_questions
=
248349
num_val_questions
=
10000
#121512
num_val_subset_questions
=
10000
num_val_questions
=
121512
num_val_rest_questions
=
num_val_questions
-
num_val_subset_questions
num_test_questions
=
0
# Answer classifier training params
...
...
@@ -189,7 +192,7 @@ answer_fine_tune_from_iter = 19500
answer_fine_tune_from
=
answer_model
+
'
-
'
+
str
(
answer_fine_tune_from_iter
)
# Answer eval params
answer_eval_on
=
'
val
'
answer_eval_on
=
'
val
_rest
'
answer_model_to_eval
=
answer_model
+
'
-39000
'
answer_eval_data_json
=
os
.
path
.
join
(
...
...
This diff is collapsed.
Click to expand it.
visual_util/visualize_relevance.py
+
26
−
7
View file @
8922eafe
...
...
@@ -2,6 +2,7 @@ import ujson
import
os
import
csv
import
numpy
as
np
import
random
from
matplotlib
import
cm
import
image_io
...
...
@@ -103,10 +104,13 @@ class RelevanceVisualizer():
box_score_pairs
=
self
.
get_box_score_pairs
(
bboxes
,
rel_scores
)
rel_map
=
np
.
zeros
(
im
.
shape
[
0
:
2
])
for
box
,
score
in
box_score_pairs
:
gauss_map
=
self
.
make_gaussian
(
box
,
im
.
shape
[
0
:
2
])
rel_map
=
np
.
maximum
(
rel_map
,
score
*
gauss_map
)
box_map
=
self
.
make_boxmap
(
box
,
im
.
shape
[
0
:
2
])
rel_map
=
rel_map
+
score
*
box_map
# gauss_map = self.make_gaussian(box, im.shape[0:2])
# rel_map = np.maximum(rel_map, score*box_map)
rel_map_
=
cm
.
jet
(
np
.
uint8
(
rel_map
*
255
))[:,:,
0
:
3
]
*
255
im_rel_map
=
np
.
uint8
(
0.3
*
im
+
0.7
*
rel_map_
)
# im_rel_map = np.uint8(0.5*im+0.5*rel_map_)
im_rel_map
=
np
.
uint8
(
0.2
*
im
+
0.8
*
np
.
tile
(
rel_map
[:,:,
None
],
[
1
,
1
,
3
])
*
im
)
return
rel_map
,
im_rel_map
,
ans
,
ans_score
def
make_gaussian
(
self
,
box
,
im_size
):
...
...
@@ -121,6 +125,16 @@ class RelevanceVisualizer():
g
=
np
.
exp
(
-
((
xx
-
cx
)
**
2
/
(
2
*
sigma_x
**
2
))
-
((
yy
-
cy
)
**
2
/
(
2
*
sigma_y
**
2
)))
return
g
def
make_boxmap
(
self
,
box
,
im_size
):
im_h
,
im_w
=
im_size
x
=
int
(
box
[
'
x
'
])
y
=
int
(
box
[
'
y
'
])
w
=
int
(
box
[
'
w
'
])
h
=
int
(
box
[
'
h
'
])
map
=
np
.
zeros
(
im_size
)
map
[
y
-
1
:
y
+
h
-
1
,
x
-
1
:
x
+
w
-
1
]
=
1.0
return
map
def
write_html
(
self
):
col_dict
=
{
0
:
'
Question
'
,
...
...
@@ -128,9 +142,13 @@ class RelevanceVisualizer():
2
:
'
Pos. Relevance
'
,
3
:
'
Pred. Answer
'
,
4
:
'
Pred. Relevance
'
,
5
:
'
Question Id
'
}
self
.
html_writer
.
add_element
(
col_dict
)
for
qid
in
rel_vis
.
eval_data
.
keys
():
random
.
seed
(
0
)
qids
=
sorted
(
rel_vis
.
eval_data
.
keys
())
random
.
shuffle
(
qids
)
for
qid
in
qids
[
0
:
5000
]:
question
=
rel_vis
.
anno_data
[
qid
][
'
question
'
]
pred_rel
,
pred_im_rel
,
pred_ans
,
pred_score
=
rel_vis
.
create_relevance_map
(
...
...
@@ -159,11 +177,12 @@ class RelevanceVisualizer():
2
:
self
.
html_writer
.
image_tag
(
pos_im_name
,
im_h
,
im_w
),
3
:
pred_ans
+
'
:
'
+
str
(
pred_score
),
4
:
self
.
html_writer
.
image_tag
(
pred_im_name
,
im_h
,
im_w
),
5
:
qid
,
}
self
.
html_writer
.
add_element
(
col_dict
)
self
.
html_writer
.
close
()
self
.
html_writer
.
close
_file
()
if
__name__
==
'
__main__
'
:
...
...
@@ -185,9 +204,9 @@ if __name__=='__main__':
eval_data_json
=
os
.
path
.
join
(
exp_dir
,
'
answer_classifiers/eval_val_data.json
'
)
'
answer_classifiers/eval_val_
rest_
data.json
'
)
output_dir
=
os
.
path
.
join
(
exp_dir
,
'
qual_results
2
'
)
output_dir
=
os
.
path
.
join
(
exp_dir
,
'
qual_results
_val_rest_conf
'
)
if
not
os
.
path
.
exists
(
output_dir
):
os
.
mkdir
(
output_dir
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment