Skip to content
Snippets Groups Projects
Commit 5093204d authored by tgupta6's avatar tgupta6
Browse files

obj atr wt in constants file

parent ee037267
No related branches found
No related tags found
No related merge requests found
......@@ -87,6 +87,7 @@ if __name__=='__main__':
constants.num_regions_with_labels,
constants.num_object_labels,
constants.num_attribute_labels,
constants.answer_obj_atr_loss_wt,
resnet_feat_dim=constants.resnet_feat_dim,
training=True)
......
......@@ -29,6 +29,7 @@ class graph_creator():
num_regions_w_labels,
num_object_labels,
num_attribute_labels,
obj_atr_loss_wt,
resnet_feat_dim=2048,
training=True):
self.im_h, self.im_w = image_size
......@@ -40,6 +41,7 @@ class graph_creator():
self.num_regions_w_labels = num_regions_w_labels
self.num_object_labels = num_object_labels
self.num_attribute_labels = num_attribute_labels
self.obj_atr_loss_wt = obj_atr_loss_wt
self.resnet_feat_dim = resnet_feat_dim
self.training = training
self.tf_graph = tf.Graph()
......@@ -369,7 +371,7 @@ class graph_creator():
self.regularization_loss = self.regularization()
self.total_loss = 0.0*(self.object_loss + 1000.0*self.attribute_loss) + \
self.total_loss = self.obj_atr_loss_wt*(self.object_loss + 1000.0*self.attribute_loss) + \
self.regularization_loss + \
self.answer_loss
......@@ -743,6 +745,7 @@ if __name__=='__main__':
constants.num_regions_with_labels,
constants.num_object_labels,
constants.num_attribute_labels,
constants.answer_obj_atr_loss_wt,
resnet_feat_dim=constants.resnet_feat_dim,
training=True)
......
......@@ -5,7 +5,7 @@ def mkdir_if_not_exists(dir_name):
if not os.path.exists(dir_name):
os.mkdir(dir_name)
experiment_name = 'QA_explicit_dot_joint_training_pretrained'
experiment_name = 'QA_explicit_dot_joint_training_pretrained_same_lr'
#experiment_name = 'object_attribute_classifier_large_images'
# Global output directory (all subexperiments will be saved here)
global_output_dir = '/home/tanmay/Code/GenVQA/Exp_Results/VQA'
......@@ -159,12 +159,13 @@ num_test_questions = 0
# Answer classifier training params
answer_batch_size = 50
answer_num_epochs = 10
answer_num_epochs = 4
answer_offset = 0
answer_obj_atr_loss_wt = 0.1
answer_regularization_coeff = 1e-5
answer_queue_size = 500
answer_embedding_dim = 600
answer_lr = 1e-4
answer_lr = 1e-3
answer_log_every_n_iter = 500
answer_output_dir = os.path.join(
global_experiment_dir,
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment