Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
G
GenVQA
Manage
Activity
Members
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Model registry
Analyze
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Vision
GenVQA
Commits
39219523
Commit
39219523
authored
9 years ago
by
tgupta6
Browse files
Options
Downloads
Patches
Plain Diff
classifiers/object_classifiers/obj_data_io_helper.py
parent
b9351f74
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
classifiers/object_classifiers/obj_data_io_helper.py
+85
-0
85 additions, 0 deletions
classifiers/object_classifiers/obj_data_io_helper.py
with
85 additions
and
0 deletions
classifiers/object_classifiers/obj_data_io_helper.py
0 → 100644
+
85
−
0
View file @
39219523
#Embedded file name: /home/tanmay/Code/GenVQA/GenVQA/classifiers/object_classifiers/obj_data_io_helper.py
import
json
import
sys
import
os
import
matplotlib.pyplot
as
plt
import
matplotlib.image
as
mpimg
import
numpy
as
np
import
tensorflow
as
tf
from
scipy
import
misc
def
obj_mini_batch_loader
(
json_filename
,
image_dir
,
mean_image
,
start_index
,
batch_size
,
img_height
=
100
,
img_width
=
100
,
channels
=
3
):
with
open
(
json_filename
,
'
r
'
)
as
json_file
:
json_data
=
json
.
load
(
json_file
)
obj_images
=
np
.
empty
(
shape
=
[
9
*
batch_size
,
img_height
/
3
,
img_width
/
3
,
channels
])
obj_labels
=
np
.
zeros
(
shape
=
[
9
*
batch_size
,
4
])
for
i
in
range
(
start_index
,
start_index
+
batch_size
):
image_name
=
os
.
path
.
join
(
image_dir
,
str
(
i
)
+
'
.jpg
'
)
image
=
misc
.
imresize
(
mpimg
.
imread
(
image_name
),
(
img_height
,
img_width
),
interp
=
'
nearest
'
)
crop_shape
=
np
.
array
([
image
.
shape
[
0
],
image
.
shape
[
1
]])
/
3
selected_anno
=
[
q
for
q
in
json_data
if
q
[
'
image_id
'
]
==
i
]
grid_config
=
selected_anno
[
0
][
'
config
'
]
counter
=
0
for
grid_row
in
range
(
0
,
3
):
for
grid_col
in
range
(
0
,
3
):
start_row
=
grid_row
*
crop_shape
[
0
]
start_col
=
grid_col
*
crop_shape
[
1
]
cropped_image
=
image
[
start_row
:
start_row
+
crop_shape
[
0
],
start_col
:
start_col
+
crop_shape
[
1
],
:]
if
np
.
ndim
(
mean_image
)
==
0
:
obj_images
[
9
*
(
i
-
start_index
)
+
counter
,
:,
:,
:]
=
cropped_image
/
254.0
else
:
obj_images
[
9
*
(
i
-
start_index
)
+
counter
,
:,
:,
:]
=
(
cropped_image
-
mean_image
)
/
254
obj_labels
[
9
*
(
i
-
start_index
)
+
counter
,
grid_config
[
6
*
grid_row
+
2
*
grid_col
]]
=
1
counter
=
counter
+
1
return
(
obj_images
,
obj_labels
)
def
mean_image_batch
(
json_filename
,
image_dir
,
start_index
,
batch_size
,
img_height
=
100
,
img_width
=
100
,
channels
=
3
):
batch
=
obj_mini_batch_loader
(
json_filename
,
image_dir
,
np
.
empty
([]),
start_index
,
batch_size
,
img_height
,
img_width
,
channels
)
mean_image
=
np
.
mean
(
batch
[
0
],
0
)
return
mean_image
def
mean_image
(
json_filename
,
image_dir
,
num_images
,
batch_size
,
img_height
=
100
,
img_width
=
100
,
channels
=
3
):
max_iter
=
np
.
floor
(
num_images
/
batch_size
)
mean_image
=
np
.
zeros
([
img_height
/
3
,
img_width
/
3
,
channels
])
for
i
in
range
(
max_iter
.
astype
(
np
.
int16
)):
mean_image
=
mean_image
+
mean_image_batch
(
json_filename
,
image_dir
,
1
+
i
*
batch_size
,
batch_size
,
img_height
,
img_width
,
channels
)
mean_image
=
mean_image
/
max_iter
tmp_mean_image
=
mean_image
*
254
return
mean_image
class
html_obj_table_writer
:
def
__init__
(
self
,
filename
):
self
.
filename
=
filename
self
.
html_file
=
open
(
self
.
filename
,
'
w
'
)
self
.
html_file
.
write
(
'
<!DOCTYPE html>
\n
<html>
\n
<body>
\n
<table border=
"
1
"
style=
"
width:100%
"
>
\n
'
)
def
add_element
(
self
,
col_dict
):
self
.
html_file
.
write
(
'
<tr>
\n
'
)
for
key
in
range
(
len
(
col_dict
)):
self
.
html_file
.
write
(
'
<td>{}</td>
\n
'
.
format
(
col_dict
[
key
]))
self
.
html_file
.
write
(
'
</tr>
\n
'
)
def
image_tag
(
self
,
image_path
,
height
,
width
):
return
'
<img src=
"
{}
"
alt=
"
IMAGE NOT FOUND!
"
height={} width={}>
'
.
format
(
image_path
,
height
,
width
)
def
close_file
(
self
):
self
.
html_file
.
write
(
'
</table>
\n
</body>
\n
</html>
'
)
self
.
html_file
.
close
()
if
__name__
==
'
__main__
'
:
html_writer
=
html_obj_table_writer
(
'
/home/tanmay/Code/GenVQA/Exp_Results/Shape_Classifier_v_1/trial.html
'
)
col_dict
=
{
0
:
'
sam
'
,
1
:
html_writer
.
image_tag
(
'
something.png
'
,
25
,
25
)}
html_writer
.
add_element
(
col_dict
)
html_writer
.
close_file
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment