Skip to content
Snippets Groups Projects
Commit 383d8d57 authored by tgupta6's avatar tgupta6
Browse files

change in constants_vision_gpu_1 and something in train

parent cc38d8bd
No related branches found
No related tags found
No related merge requests found
......@@ -554,7 +554,7 @@ class attach_optimizer():
self.optimizer.add_variables(
self.graph.object_attribute_vars + self.graph.word_vec_vars,
learning_rate = 1.0*self.lr)
learning_rate = 0.0*self.lr)
self.optimizer.add_variables(
......
......@@ -5,7 +5,7 @@ def mkdir_if_not_exists(dir_name):
if not os.path.exists(dir_name):
os.mkdir(dir_name)
experiment_name = 'QA_explicit_dot_joint_training_pretrained_fix_pretrained'
experiment_name = 'QA_pretrain_genome_split'
#experiment_name = 'object_attribute_classifier_large_images'
# Global output directory (all subexperiments will be saved here)
global_output_dir = '/data/tanmay/GenVQA_Exp_Results'
......@@ -56,6 +56,18 @@ vocab_json = os.path.join(
data_absolute_path,
'restructured/vocab_subset.json')
genome_train_subset_region_ids = os.path.join(
data_absolute_path,
'restructured/train_subset_region_ids.json')
genome_train_held_out_region_ids = os.path.join(
data_absolute_path,
'restructured/train_held_out_region_ids.json')
genome_test_region_ids = os.path.join(
data_absolute_path,
'restructured/test_region_ids.json')
num_object_labels = 1000
num_attribute_labels = 1000
......@@ -63,12 +75,12 @@ num_attribute_labels = 1000
# First 80% meant to be used for training
# Next 10% is set aside for validation
# Last 10% is to be used for testing
num_total_regions = 1951768
num_train_regions = 1561416 # First 80%
num_val_regions = 195176 # Next 10%
num_test_regions = num_total_regions \
- num_train_regions \
- num_val_regions
# num_total_regions = 1951768
# num_train_regions = 1561416 # First 80%
# num_val_regions = 195176 # Next 10%
# num_test_regions = num_total_regions \
# - num_train_regions \
# - num_val_regions
# Pretrained resnet ckpt
resnet_ckpt = '/home/nfs/tgupta6/data/Resnet/' + \
......@@ -88,7 +100,7 @@ pretrained_vocab_word_vectors_npy = os.path.join(
# Object Attribute Classifier Training Params
region_batch_size = 200
region_num_samples = num_train_regions
# region_num_samples = num_train_regions
region_num_epochs = 4
region_offset = 0
region_queue_size = 400
......@@ -171,11 +183,11 @@ vqa_answer_vocab_json = os.path.join(
answer_batch_size = 50
answer_num_epochs = 10
answer_offset = 0
answer_obj_atr_loss_wt = 0.1
answer_obj_atr_loss_wt = 0.0
answer_regularization_coeff = 1e-5
answer_queue_size = 500
answer_embedding_dim = 600
answer_lr = 1e-4
answer_lr = 1e-3
answer_log_every_n_iter = 500
answer_output_dir = os.path.join(
global_experiment_dir,
......@@ -184,8 +196,8 @@ answer_output_dir = os.path.join(
mkdir_if_not_exists(answer_output_dir)
pretrained_model = '/home/nfs/tgupta6/projects/GenVQA/Exp_Results/' +\
'pretrained_object_attribute_classifier/' +\
'obj_atr_model_77500'
'object_attribute_classifier_large_images_vqa_split/' +\
'object_attribute_classifiers/model-80000'
answer_model = os.path.join(
answer_output_dir,
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment