Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
G
GenVQA
Manage
Activity
Members
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Model registry
Analyze
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Vision
GenVQA
Commits
22de2cfa
Commit
22de2cfa
authored
8 years ago
by
tgupta6
Browse files
Options
Downloads
Patches
Plain Diff
eval_interpret
parent
60ed8b9c
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
answer_classifier_cached_features/eval_interpret.py
+379
-0
379 additions, 0 deletions
answer_classifier_cached_features/eval_interpret.py
with
379 additions
and
0 deletions
answer_classifier_cached_features/eval_interpret.py
0 → 100644
+
379
−
0
View file @
22de2cfa
# from word2vec.word_vector_management import word_vector_manager
# import object_attribute_classifier.inference as feature_graph
# import region_relevance_network.inference as relevance_graph
# import answer_classifier.inference as answer_graph
from
tftools
import
var_collect
,
placeholder_management
import
tftools.data
import
losses
import
constants
import
tftools.var_collect
as
var_collect
import
data.vqa_cached_features
as
vqa_data
import
answer_classifier_cached_features.train
as
train
import
numpy
as
np
import
pdb
import
ujson
import
tensorflow
as
tf
def
create_initializer
(
graph
,
sess
,
model
):
class
initializer
():
def
__init__
(
self
):
with
graph
.
tf_graph
.
as_default
():
model_vars
=
graph
.
vars_to_save
model_restorer
=
tf
.
train
.
Saver
(
model_vars
)
model_restorer
.
restore
(
sess
,
model
)
not_to_init
=
model_vars
all_vars
=
tf
.
all_variables
()
other_vars
=
[
var
for
var
in
all_vars
if
var
not
in
not_to_init
]
var_collect
.
print_var_list
(
other_vars
,
'
vars_to_init
'
)
self
.
init
=
tf
.
initialize_variables
(
other_vars
)
def
initialize
(
self
):
sess
.
run
(
self
.
init
)
return
initializer
()
def
create_batch_generator
(
mode
):
if
mode
==
'
val
'
:
vqa_resnet_feat_dir
=
constants
.
vqa_val_resnet_feat_dir
vqa_anno
=
constants
.
vqa_val_anno
qids_json
=
constants
.
vqa_val_qids
else
:
print
"
mode needs to be one of {
'
val
'
}, found
"
+
mode
data_mgr
=
vqa_data
.
data
(
vqa_resnet_feat_dir
,
vqa_anno
,
qids_json
,
constants
.
vocab_json
,
constants
.
vqa_answer_vocab_json
,
constants
.
object_labels_json
,
constants
.
attribute_labels_json
,
constants
.
image_size
,
constants
.
num_region_proposals
,
constants
.
num_negative_answers
,
resnet_feat_dim
=
constants
.
resnet_feat_dim
)
num_questions
=
len
(
data_mgr
.
qids
)
index_generator
=
tftools
.
data
.
sequential
(
constants
.
answer_batch_size
,
num_questions
,
1
,
0
)
batch_generator
=
tftools
.
data
.
async_batch_generator
(
data_mgr
,
index_generator
,
constants
.
answer_queue_size
)
return
batch_generator
def
create_feed_dict_creator
(
plh
,
num_neg_answers
):
def
feed_dict_creator
(
batch
):
vqa_batch
=
batch
batch_size
=
len
(
vqa_batch
[
'
question
'
])
# Create vqa inputs
inputs
=
{
'
region_feats
'
:
np
.
concatenate
(
vqa_batch
[
'
region_feats
'
],
axis
=
0
),
'
positive_answer
'
:
vqa_batch
[
'
positive_answer
'
],
}
for
i
in
xrange
(
4
):
bin_name
=
'
bin_
'
+
str
(
i
)
inputs
[
bin_name
]
=
[
vqa_batch
[
'
question
'
][
j
][
bin_name
]
for
j
in
xrange
(
batch_size
)]
for
i
in
xrange
(
num_neg_answers
):
answer_name
=
'
negative_answer_
'
+
str
(
i
)
inputs
[
answer_name
]
=
[
vqa_batch
[
'
negative_answers
'
][
j
][
i
]
for
j
in
xrange
(
batch_size
)]
inputs
[
'
positive_nouns
'
]
=
[
a
+
b
for
a
,
b
in
zip
(
vqa_batch
[
'
question_nouns
'
],
vqa_batch
[
'
positive_answer_nouns
'
])]
inputs
[
'
positive_adjectives
'
]
=
[
a
+
b
for
a
,
b
in
zip
(
vqa_batch
[
'
question_adjectives
'
],
vqa_batch
[
'
positive_answer_adjectives
'
])]
inputs
[
'
positive_nouns_identity
'
]
=
[
vqa_batch
[
'
nouns_identity
'
][
j
][
0
]
for
j
in
xrange
(
batch_size
)]
inputs
[
'
positive_adjectives_identity
'
]
=
[
vqa_batch
[
'
adjectives_identity
'
][
j
][
0
]
for
j
in
xrange
(
batch_size
)]
for
i
in
xrange
(
num_neg_answers
):
name
=
'
negative_nouns_
'
+
str
(
i
)
list_ith_negative_answer_nouns
=
[
vqa_batch
[
'
negative_answers_nouns
'
][
j
][
i
]
for
j
in
xrange
(
batch_size
)]
inputs
[
name
]
=
[
a
+
b
for
a
,
b
in
zip
(
vqa_batch
[
'
question_nouns
'
],
list_ith_negative_answer_nouns
)]
name
=
'
negative_adjectives_
'
+
str
(
i
)
list_ith_negative_answer_adjectives
=
[
vqa_batch
[
'
negative_answers_adjectives
'
][
j
][
i
]
for
j
in
xrange
(
batch_size
)]
inputs
[
name
]
=
[
a
+
b
for
a
,
b
in
zip
(
vqa_batch
[
'
question_adjectives
'
],
list_ith_negative_answer_adjectives
)]
name
=
'
negative_nouns_identity_
'
+
str
(
i
)
inputs
[
name
]
=
[
vqa_batch
[
'
nouns_identity
'
][
j
][
i
+
1
]
for
j
in
xrange
(
batch_size
)]
name
=
'
negative_adjectives_identity_
'
+
str
(
i
)
inputs
[
name
]
=
[
vqa_batch
[
'
adjectives_identity
'
][
j
][
i
+
1
]
for
j
in
xrange
(
batch_size
)]
inputs
[
'
yes_no_num_feat
'
]
=
vqa_batch
[
'
yes_no_num_feat
'
]
inputs
[
'
keep_prob
'
]
=
1.0
return
plh
.
get_feed_dict
(
inputs
)
return
feed_dict_creator
class
eval_mgr
():
def
__init__
(
self
,
eval_data_json
,
results_json
,
inv_object_labels_dict
,
inv_attribute_labels_dict
,
):
self
.
eval_data_json
=
eval_data_json
self
.
results_json
=
results_json
self
.
inv_object_labels_dict
=
inv_object_labels_dict
self
.
inv_attribute_labels_dict
=
inv_attribute_labels_dict
self
.
eval_data
=
dict
()
self
.
correct
=
0
self
.
total
=
0
self
.
results
=
[]
self
.
seen_qids
=
set
()
def
eval
(
self
,
iter
,
eval_vars_dict
,
batch
):
batch_size
=
len
(
batch
[
'
question_unencoded
'
])
k
=
10
pred_obj_labels
=
self
.
get_top_k_labels
(
eval_vars_dict
[
'
object_prob
'
],
k
)
pred_atr_labels
=
self
.
get_top_k_labels
(
eval_vars_dict
[
'
attribute_prob
'
],
k
,
'
atr
'
)
for
j
in
xrange
(
batch_size
):
dict_entry
=
dict
()
dict_entry
[
'
question
'
]
=
batch
[
'
question_unencoded
'
][
j
]
dict_entry
[
'
positive_answer
'
]
=
{
batch
[
'
positive_answer_unencoded
'
][
j
]:
str
(
eval_vars_dict
[
'
answer_score_
'
+
str
(
j
)][
0
,
0
])}
dict_entry
[
'
negative_answers
'
]
=
dict
()
for
i
in
xrange
(
len
(
batch
[
'
negative_answers_unencoded
'
][
j
])):
answer
=
batch
[
'
negative_answers_unencoded
'
][
j
][
i
]
dict_entry
[
'
negative_answers
'
][
answer
]
=
\
str
(
eval_vars_dict
[
'
answer_score_
'
+
str
(
j
)][
0
,
i
+
1
])
dict_entry
[
'
relevance_scores
'
]
=
eval_vars_dict
[
'
relevance_prob_
'
+
str
(
j
)].
tolist
()
selected_region
=
np
.
argmax
(
dict_entry
[
'
relevance_scores
'
][
0
,:])
question_id
=
batch
[
'
question_id
'
][
j
]
pred_answer
,
pred_score
=
self
.
get_pred_answer
(
[
batch
[
'
positive_answer_unencoded
'
][
j
]]
+
\
batch
[
'
negative_answers_unencoded
'
][
j
],
eval_vars_dict
[
'
answer_score_
'
+
str
(
j
)][
0
,:].
tolist
()
)
result_entry
=
{
'
question_id
'
:
int
(
question_id
),
'
answer
'
:
pred_answer
,
'
pred_obj_labels
'
:
pred_obj_labels
[
selected_region
+
j
*
constants
.
num_region_proposals
]
'
pred_atr_labels
'
:
pred_atr_labels
[
selected_region
+
j
*
constants
.
num_region_proposals
]
}
if
question_id
not
in
self
.
seen_qids
:
self
.
seen_qids
.
add
(
question_id
)
self
.
results
.
append
(
result_entry
)
else
:
print
'
Already evaluated on this sample
'
self
.
eval_data
[
str
(
question_id
)]
=
dict_entry
# print dict_entry
self
.
total
+=
batch_size
self
.
correct
+=
eval_vars_dict
[
'
accuracy
'
]
*
batch_size
self
.
print_accuracy
()
if
iter
%
100
==
0
:
self
.
write_data
()
def
get_pred_answer
(
self
,
answers
,
scores
):
pred_answer
=
''
pred_score
=
-
1e5
for
answer
,
score
in
zip
(
answers
,
scores
):
if
score
>
pred_score
:
pred_score
=
score
pred_answer
=
answer
return
pred_answer
,
pred_score
def
get_top_k_labels
(
self
,
prob
,
k
,
type
=
'
obj
'
):
num_samples
,
num_classes
=
prob
.
shape
top_k_labels
=
[
None
]
*
num_samples
for
i
in
xrange
(
num_samples
):
top_k
=
np
.
argsort
(
prob
[
i
,:]).
tolist
()[
-
1
:
-
1
-
k
:
-
1
]
top_k_labels
[
i
]
=
[]
for
idx
in
top_k
:
if
type
==
'
obj
'
:
top_k_labels
[
i
]
+=
[
self
.
inv_object_labels_dict
[
idx
]]
elif
type
==
'
atr
'
:
top_k_labels
[
i
]
+=
[
self
.
inv_attribute_labels_dict
[
idx
]]
return
top_k_labels
def
is_correct
(
self
,
answer_scores
):
max_id
=
np
.
argmax
(
answer_scores
,
1
)
if
max_id
[
0
]
==
0
:
return
True
def
print_accuracy
(
self
):
print
'
Total: {} Correct: {} Accuracy: {}
'
.
format
(
self
.
total
,
self
.
correct
,
self
.
correct
/
float
(
self
.
total
))
def
write_data
(
self
):
with
open
(
self
.
eval_data_json
,
'
w
'
)
as
file
:
ujson
.
dump
(
self
.
eval_data
,
file
,
indent
=
4
,
sort_keys
=
True
)
with
open
(
self
.
results_json
,
'
w
'
)
as
file
:
ujson
.
dump
(
self
.
results
,
file
,
indent
=
4
,
sort_keys
=
True
)
def
eval
(
batch_generator
,
sess
,
initializer
,
vars_to_eval_dict
,
feed_dict_creator
,
evaluator
):
vars_to_eval_names
=
[]
vars_to_eval
=
[]
for
var_name
,
var
in
vars_to_eval_dict
.
items
():
vars_to_eval_names
+=
[
var_name
]
vars_to_eval
+=
[
var
]
with
sess
.
as_default
():
initializer
.
initialize
()
iter
=
0
for
batch
in
batch_generator
:
print
'
---
'
print
'
Iter: {}
'
.
format
(
iter
)
feed_dict
=
feed_dict_creator
(
batch
)
eval_vars
=
sess
.
run
(
vars_to_eval
,
feed_dict
=
feed_dict
)
eval_vars_dict
=
{
var_name
:
eval_var
for
var_name
,
eval_var
in
zip
(
vars_to_eval_names
,
eval_vars
)}
evaluator
.
eval
(
iter
,
eval_vars_dict
,
batch
)
iter
+=
1
evaluator
.
write_data
()
if
__name__
==
'
__main__
'
:
print
'
Creating batch generator...
'
batch_generator
=
create_batch_generator
(
constants
.
answer_eval_on
)
print
'
Creating computation graph...
'
graph
=
train
.
graph_creator
(
constants
.
tb_log_dir
,
constants
.
answer_batch_size
,
constants
.
image_size
,
constants
.
num_negative_answers
,
constants
.
answer_regularization_coeff
,
constants
.
answer_batch_size
*
constants
.
num_region_proposals
,
0
,
0
,
0
,
constants
.
answer_obj_atr_loss_wt
,
constants
.
answer_ans_loss_wt
,
constants
.
answer_mil_loss_wt
,
resnet_feat_dim
=
constants
.
resnet_feat_dim
,
training
=
False
)
print
'
Starting a session...
'
config
=
tf
.
ConfigProto
()
config
.
gpu_options
.
allow_growth
=
True
config
.
gpu_options
.
per_process_gpu_memory_fraction
=
0.9
sess
=
tf
.
Session
(
config
=
config
,
graph
=
graph
.
tf_graph
)
print
'
Creating initializer...
'
initializer
=
create_initializer
(
graph
,
sess
,
constants
.
answer_model_to_eval
)
print
'
Creating feed dict creator...
'
feed_dict_creator
=
create_feed_dict_creator
(
graph
.
plh
,
constants
.
num_negative_answers
)
print
'
Creating dict of vars to be evaluated...
'
vars_to_eval_dict
=
{
'
accuracy
'
:
graph
.
answer_accuracy
,
'
object_prob
'
:
graph
.
obj_atr_inference
.
object_prob
,
'
attribute_prob
'
:
graph
.
obj_atr_inference
.
attribute_prob
,
}
for
j
in
xrange
(
constants
.
answer_batch_size
):
vars_to_eval_dict
[
'
answer_score_
'
+
str
(
j
)]
=
\
graph
.
answer_inference
.
answer_score
[
j
]
vars_to_eval_dict
[
'
relevance_prob_
'
+
str
(
j
)]
=
\
graph
.
relevance_inference
.
answer_region_prob
[
j
]
# Read inverse object labels
with
open
(
constants
.
object_labels_json
,
'
r
'
)
as
file
:
object_labels_dict
=
ujson
.
load
(
file
)
inv_object_labels_dict
=
{
int
(
v
):
k
for
k
,
v
in
object_labels_dict
.
items
()}
# Read inverse attribute labels
with
open
(
constants
.
attribute_labels_json
,
'
r
'
)
as
file
:
attribute_labels_dict
=
ujson
.
load
(
file
)
inv_attribute_labels_dict
=
{
int
(
v
):
k
for
k
,
v
in
attribute_labels_dict
.
items
()}
print
'
Creating evaluation manager...
'
evaluator
=
eval_mgr
(
constants
.
answer_eval_data_json
,
constants
.
answer_eval_results_json
,
inv_object_labels_dict
,
inv_attribute_labels_dict
)
print
'
Start training...
'
eval
(
batch_generator
,
sess
,
initializer
,
vars_to_eval_dict
,
feed_dict_creator
,
evaluator
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment