Skip to content
Snippets Groups Projects
losses.py 1.27 KiB
Newer Older
  • Learn to ignore specific revisions
  • import tensorflow as tf
    
    
    def object_loss(scores, labels):
        with tf.variable_scope('object_loss'):
            loss_vector = tf.nn.softmax_cross_entropy_with_logits(
                scores,
                labels,
                name='softmax_cross_entropy_with_logits')
    
            loss = tf.reduce_mean(
                loss_vector, 
                name='average_loss')
    
        return loss
    
    
    def attribute_loss(scores, labels):
        with tf.variable_scope('attribute_loss'):
            loss_matrix = tf.nn.sigmoid_cross_entropy_with_logits(
                scores,
                labels,
                name='sigmoid_cross_entropy_with_logits')
    
            # label_count = tf.reduce_mean(
            #     labels, 
            #     0,
            #     keep_dims=True,
            #     name='label_count')
    
            # label_count = tf.truediv(
            #     label_count,
            #     tf.to_float(label_count.get_shape().as_list()[0]),
            #     name='normalized_label_count')
    
            loss = tf.reduce_mean(
                loss_matrix,
    #            tf.matmul(loss_matrix, tf.transpose(label_count)),
                name='average_loss')
    
        return loss
    
    
    def regularization_loss(param_list, coeff):
        regularizer = tf.zeros(shape=[])
        for param in param_list:
            regularizer += tf.nn.l2_loss(param) 
        return coeff*regularizer