Skip to content
Snippets Groups Projects
algorithm.ipynb 33.4 KiB
Newer Older
r-sowers's avatar
r-sowers committed
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Code for **Task Disambiguation in  Hand-Picked Agriculture**\n",
    "Project Director: Richard Sowers <r-sowers@illinois.edu>\n",
    " \n",
    "Copyright 2018 University of Illinois Board of Trustees. All Rights Reserved.\n",
    "Licensed under the MIT license"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "imports"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "import numpy\n",
    "import pandas\n",
    "import pickle\n",
    "import itertools\n",
    "import datetime\n",
    "#%matplotlib notebook\n",
    "%matplotlib inline\n",
    "import pytz\n",
    "import matplotlib.pyplot as plotter\n",
    "#import matplotlib.mlab as mlab\n",
    "#import statsmodels.api as sm\n",
    "imagesuffix=\".png\"\n",
    "N_finer=10\n",
    "region=pytz.timezone(\"America/Los_Angeles\")\n",
    "fname=\"data.csv\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "getData function\n",
    "data should be in .csv file with columns labelled \"IMEI\",\"Latitude\",\"locationTimestamp\"\n",
    "* locationTimestamp should be seconds since epoch"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "def ts_to_time(ts):\n",
    "    return region.normalize(region.localize(datetime.datetime.fromtimestamp(ts)))"
   ]
  },
  {
   "cell_type": "code",
r-sowers's avatar
r-sowers committed
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['351554053682895', '353918057262822', '353918059182986', '869578020239930']\n",
      "[Timestamp('2016-02-19 00:00:00'), Timestamp('2016-02-22 00:00:00')]\n"
     ]
    }
   ],
r-sowers's avatar
r-sowers committed
   "source": [
    "#############code to get data\n",
    "class getData:\n",
    "\tdef __init__(self,fname):\n",
    "\t\t#sheetname=\"outdata_with_time\"\n",
    "\t\t#raw_data = pandas.read_excel(\"outdata_with_time.xlsx\", sheetname=\"outdata_with_time\", header=0)\n",
    "\t\tself.data=pandas.read_csv(str(fname))\n",
    "\t\tself.data.columns=[\"IMEI\",\"Latitude\",\"locationTimestamp\"]\n",
    "\t\tself.data = self.data.drop_duplicates()\n",
    "\t\tself.data[\"IMEI\"] = self.data[\"IMEI\"].astype(\"str\")\n",
    "\t\tself.data[\"datetime\"]=pandas.to_datetime(self.data[\"locationTimestamp\"].apply(ts_to_time))\n",
    "\t\t#print(data)\n",
    "\t\tself.IMEISet=sorted(list(frozenset(self.data[\"IMEI\"])))\n",
    "\t\tself.data[\"date\"]=pandas.to_datetime(self.data[\"datetime\"].apply(lambda t:t.date()))\n",
    "\t\tself.data.set_index([\"IMEI\",\"locationTimestamp\",\"datetime\",\"date\"],append=True,drop=True,inplace=True)\n",
    "\t\tself.dateSet=sorted(list(frozenset(self.data.index.get_level_values(\"date\"))))\n",
    "\n",
    "\tdef get(self,IMEI,DATE):\n",
    "\t\tflags=numpy.logical_and(self.data.index.get_level_values(\"date\")==DATE,\n",
    "                                self.data.index.get_level_values(\"IMEI\")==IMEI)\n",
    "\t\treduced_data=self.data.loc[flags]\n",
    "\t\t#temp=numpy.array(reduced_data).reshape([-1,len(outlist)])\n",
    "\t\t#print(\"shape of data: \",temp.shape)\n",
    "\t\treturn reduced_data\n",
    "    \n",
    "    \n",
    "gd=getData(fname)\n",
    "print(sorted(gd.IMEISet))\n",
    "print(gd.dateSet)"
r-sowers's avatar
r-sowers committed
   ]
  },
  {
   "cell_type": "code",
r-sowers's avatar
r-sowers committed
   "metadata": {
    "collapsed": false
   },
r-sowers's avatar
r-sowers committed
   "source": [
    "test_imei=gd.IMEISet[0]\n",
    "test_date=gd.dateSet[0]\n",
    "print(test_imei)\n",
    "print(test_date)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Box function is reference excursion shape"
   ]
  },
  {
   "cell_type": "code",
r-sowers's avatar
r-sowers committed
   "metadata": {
    "collapsed": false
   },
r-sowers's avatar
r-sowers committed
   "source": [
    "class Box:\n",
    "    def __init__(self, width=1,height=1,shift=0):\n",
    "        self.width=float(width)\n",
    "        self.height=float(height)\n",
    "        self.shift=float(shift)\n",
    "        if (self.width<0):\n",
    "            raise ValueError('negative width in LeftBox')\n",
    "\n",
    "    def refBox(self,x):\n",
    "        x=float(x)\n",
    "        #width=1,height=1,shift=0\n",
    "        return 1 if 0<=x<=1 else 0\n",
    "\n",
    "    def eval(self, x):\n",
    "        if self.width<=0:\n",
    "            return numpy.inf\n",
    "        return self.height * self.refBox((x-self.shift)/self.width)\n",
    "    \n",
    "    def harvestFlag(self,x):\n",
    "        return 0<(x-self.shift)<self.width\n",
    "    \n",
    "    def __le__(self,other):\n",
    "        if not isinstance(other, Box):\n",
    "            return NotImplemented\n",
    "        #return ((other.shift<=self.shift) and ((self.shift+self.width)<=(other.shift+other.width)))\n",
    "        return (other.shift<=self.shift<=(other.shift+other.width))\n",
    "    \n",
    "    def __ge__(self,other):\n",
    "        return (other<=self)\n",
    "    \n",
    "        \n",
    "    \n",
    "myBox=Box()\n",
    "print(\"B(0)=\",myBox.eval(0))\n",
    "xvals_b=numpy.linspace(-3,3,200)\n",
    "yvals_b=numpy.array([myBox.eval(xx) for xx in xvals_b])\n",
    "flags=numpy.array([myBox.harvestFlag(xx) for xx in xvals_b],dtype='bool')\n",
    "plotter.figure()\n",
    "plotter.plot(xvals_b,yvals_b)\n",
    "plotter.plot(xvals_b[flags],yvals_b[flags],'ro',linestyle='--',linewidth=4)\n",
    "plotter.ylim((-0.5,1.5))\n",
    "plotter.show()\n",
    "print(Box()<=Box(2,1,-5))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "code to implement [https://arxiv.org/pdf/1407.7508v1.pdf](https://arxiv.org/pdf/1407.7508v1.pdf)"
   ]
  },
  {
   "cell_type": "code",
r-sowers's avatar
r-sowers committed
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "class L0_EM:\n",
    "    def __init__(self,data,feature_info,vkap,tau=0.01):\n",
    "        #data=[[time_1,y_1],[time_2,y_2],....]\n",
    "        self.N_data=len(data)\n",
    "        self.times=numpy.array(data.index.get_level_values(\"locationTimestamp\"))\n",
    "        self.y=numpy.matrix(data[\"Latitude\"]).transpose()\n",
    "        \n",
    "        N_finer=10\n",
    "        self.times_finer=numpy.linspace(min(self.times),max(self.times),N_finer*len(self.times))\n",
    "        \n",
    "        self.feature_info=list(feature_info)\n",
    "        features=[[f.eval(t) for t in self.times] for f in self.feature_info]\n",
    "        #features=[[feature_1(time_1),feature_1(time_2)..],[feature_2(time_1)..]..]\n",
    "        self.N_features=len(features)\n",
    "        self.Feat_e_T=numpy.matrix(features+[numpy.ones(self.N_data)])\n",
    "        self.Feat_e=self.Feat_e_T.transpose()\n",
    "        \n",
    "        dt=numpy.diff(self.times)\n",
    "        temp=(dt[1:]+dt[:-1])/2\n",
    "        D=numpy.concatenate(([dt[0]],temp,[dt[-1]]))\n",
    "        self.D=numpy.diag(D)\n",
    "\n",
    "        self.A=self.Feat_e_T.dot(self.D).dot(self.Feat_e)\n",
    "        self.b=self.Feat_e_T.dot(self.D).dot(self.y)\n",
    "    \n",
    "\n",
    "        self.Id=numpy.diag([float(vkap)]*self.N_features+[0])\n",
    "        self.alpha_e=None\n",
    "        self.stopFlag=False;\n",
    "\n",
    "        self.tau=float(tau)\n",
    "        self.feature_alpha_e=None\n",
    "        self.feature_count=None\n",
    "        self.feature_times=[]\n",
    "        self.feature_peaks=[]\n",
    "        self.flags=[]\n",
    "        self.dalpha=None\n",
    "\n",
    "\n",
    "    def initialize(self):\n",
    "        #print(\"rank(A): \",numpy.linalg.matrix_rank(self.A))\n",
    "        #print(\"shape of A: \",self.A.shape)\n",
    "        #self.alpha_e=numpy.linalg.solve(self.A,self.b)\n",
    "        self.alpha_e=numpy.linalg.pinv(self.A).dot(self.b)\n",
    "        #print(\"initial alpha: \",self.alpha_e)\n",
    "        return(self.alpha_e)\n",
    "\n",
    "    def iterate(self,alpha_e=None):\n",
    "\n",
    "        #alpha_e is external, self.alpha_e is class variable\n",
    "        alpha_e=numpy.matrix(alpha_e,dtype='float').reshape([-1,1]) if alpha_e is not None else self.alpha_e\n",
    "        temp=numpy.ravel(alpha_e)**2\n",
    "        temp[self.N_features]=1\n",
    "        S=numpy.diag(temp)\n",
    "\n",
    "        new_alpha_e=numpy.linalg.pinv(S.dot(self.A)+self.Id).dot(S.dot(self.b))\n",
    "\n",
    "        denom=numpy.linalg.norm(numpy.ravel(self.alpha_e),1)\n",
    "        num=numpy.linalg.norm(numpy.ravel(new_alpha_e-self.alpha_e),1)\n",
    "        self.dalpha=num/denom\n",
    "        print(\"dalpha/alpha=\",self.dalpha)\n",
    "        self.stopFlag=(num<self.tau*denom)\n",
    "        self.alpha_e=new_alpha_e\n",
    "\n",
    "        self.feature_alpha_e=None\n",
    "        self.feature_count=None\n",
    "        self.feature_times=[]\n",
    "        self.feature_peaks=[]\n",
    "        self.flags=[]\n",
    "        self.intervals=[]\n",
    "        return(self.alpha_e)\n",
    "\n",
    "    def evaluate(self,alpha_e=None):\n",
    "        alpha_e=numpy.matrix(alpha_e,dtype='float').reshape([-1,1]) if alpha_e is not None else self.alpha_e\n",
    "        return self.Feat_e.dot(alpha_e)\n",
    "    \n",
    "    def evaluate_finer(self,alpha_e=None):\n",
    "        alpha_e=self.alpha_e if alpha_e is None else alpha_e\n",
    "        alpha_e=numpy.ravel(alpha_e)\n",
    "        constant=alpha_e[self.N_features]\n",
    "        temp=numpy.array([constant]*len(self.times_finer))\n",
    "        for n,f in enumerate(self.feature_info):\n",
    "            temp+=numpy.array([alpha_e[n]*f.eval(t) for t in self.times_finer])\n",
    "        return temp\n",
    "    \n",
    "    \n",
    "    def combine(self,a,b):\n",
    "        return (min(a[0],b[0]),max(a[1],b[1]))\n",
    "            \n",
    "    def findfeatures(self,alpha_e=None,delta=0.01,combineFlag=True):\n",
    "        alpha_e=numpy.matrix(alpha_e,dtype='float').reshape([-1,1]) if alpha_e is not None else self.alpha_e\n",
    "        alpha_e=numpy.ravel(alpha_e)\n",
    "        delta=0 if (delta is False) else float(delta) #feature threshold\n",
    "        self.feature_count=0\n",
    "        self.feature_times=[]\n",
    "        self.feature_peaks=[]\n",
    "        self.flags=[]\n",
    "        self.intervals=[(f.shift,f.shift+f.width) for aa,f in zip(alpha_e,self.feature_info)]\n",
    "            \n",
    "        \n",
    "        #threshold out the small features\n",
    "        alpha_e=numpy.array([aa if abs(aa)>=delta else 0 for aa in alpha_e])\n",
    "        \n",
    "        #combine features\n",
    "        if combineFlag:\n",
    "            for n in range(self.N_features-1,-1,-1):\n",
    "                int_n=self.intervals[n]\n",
    "                for nn in range(n-1,-1,-1):\n",
    "                    int_nn=self.intervals[nn]\n",
    "                    Flag=(alpha_e[n]!=0) and (alpha_e[nn]!=0)\n",
    "                    #Flag = Flag and (numpy.sign(alpha_e[n])==numpy.sign(alpha_e[nn]))\n",
    "                    Flag = Flag and (self.feature_info[nn]>=self.feature_info[n])\n",
    "                    if (Flag):\n",
    "                        alpha_e[nn]+=alpha_e[n]\n",
    "                        alpha_e[n]=0\n",
    "                        self.intervals[nn]=self.combine(int_n,int_nn)\n",
    "        \n",
    "        for aa,f in zip(alpha_e,self.feature_info):\n",
    "            if abs(aa)==0:\n",
    "                continue\n",
    "            tempflags=numpy.array([f.harvestFlag(tt) for tt in self.times],dtype='bool')\n",
    "            self.flags.append(tempflags)\n",
    "            self.feature_times.append(f.shift)\n",
    "            self.feature_peaks.append(f.height*aa+alpha_e[self.N_features])\n",
    "            self.feature_count+=1\n",
    "        self.feature_times=numpy.array(self.feature_times)\n",
    "        self.feature_peaks=numpy.array(self.feature_peaks)\n",
    "        self.intervals=[ival for aa,ival in zip(alpha_e,self.intervals) if abs(aa)!=0]\n",
    "        return alpha_e"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "plot "
   ]
  },
  {
   "cell_type": "code",
r-sowers's avatar
r-sowers committed
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "def makeplot(thisEM,alpha_e=None,fname=None,startFlag=True):\n",
    "    alpha_e=thisEM.alpha_e if alpha_e is None else alpha_e\n",
    "    image_prefix=\"./images/fig\"\n",
    "    image_suffix=\".png\"\n",
    "    temp=None\n",
    "    if fname is not None:\n",
    "        plotter.ioff()\n",
    "        temp=image_prefix+str(fname)+image_suffix\n",
    "        #print(\"temp: \",temp)\n",
    "        \n",
    "    yvals_finer=thisEM.evaluate_finer(alpha_e)\n",
    "    T_min=min(thisEM.times)\n",
    "    T_max=max(thisEM.times)\n",
    "    y_min=min(numpy.ravel(thisEM.y))\n",
    "  \n",
    "\n",
    "    fig=plotter.figure()\n",
    "    plotter.plot(thisEM.times_finer-T_min,yvals_finer-y_min,'g',linewidth=2)\n",
    "    plotter.plot(thisEM.times-T_min,thisEM.y-y_min,'ro',linestyle='--',linewidth=4)\n",
    "    #plotter.plot(myEM.times-T_min,myEM.evaluate(alpha_e)-y_min,'g',linewidth=2)\n",
    "    if startFlag:\n",
    "        plotter.plot(thisEM.feature_times-T_min,thisEM.feature_peaks-y_min,'bo',ms=10)\n",
    "    dy=numpy.ptp(thisEM.y)\n",
    "    plotter.xlim((0,T_max-T_min))\n",
    "    plotter.ylim((-0.25*dy,1.5*dy))\n",
    "    plotter.xlabel(\"Timestamp\")\n",
    "    plotter.ylabel(\"Latitude\")\n",
    "    for flaglist in thisEM.flags:\n",
    "        pass\n",
    "        #tempt=myEM.times[flaglist]-T_min\n",
    "        #tempy=myEM.y[flaglist]-y_min\n",
    "        #print(len(myEM.times))\n",
    "        #print(len(tempt))\n",
    "        #plotter.plot(tempt,tempy,'ko',linestyle='-',linewidth=4)\n",
    "    if temp is None:\n",
    "        plotter.show(fig)\n",
    "        return None\n",
    "    else:\n",
    "        plotter.savefig(temp)\n",
    "        plotter.close()\n",
    "\n",
    "        return temp\n",
    "        "
   ]
  },
  {
   "cell_type": "code",
r-sowers's avatar
r-sowers committed
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "def makefname(IMEI,varkappa=None,delta=None,combineFlag=None):\n",
    "    strings=[]\n",
    "    strings.append(\"Hequals\"+str(IMEI))\n",
    "    if (varkappa is not None):\n",
    "        strings.append(\"vkapequals\"+str(varkappa))\n",
    "    if (delta is not None):\n",
    "        strings.append(\"deltaequals\"+str(delta))\n",
    "    if (combineFlag is not None):\n",
    "        strings.append(\"combineFlagequals\"+str(combineFlag))\n",
    "    temp=\"_\".join(strings)\n",
    "    return temp.replace(\".\",\"point\")"
   ]
  },
  {
   "cell_type": "code",
r-sowers's avatar
r-sowers committed
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "DATE=gd.dateSet[0]\n",
    "HEIGHT=0.0002\n",
    "WIDTHS=[200,300,400,500]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "extract data for harvester and visualize it"
   ]
  },
  {
   "cell_type": "code",
r-sowers's avatar
r-sowers committed
   "metadata": {
    "collapsed": false
   },
r-sowers's avatar
r-sowers committed
   "source": [
    "IMEI=gd.IMEISet[0] #should be either 0,1,2, or 3\n",
    "\n",
    "raw_data=gd.get(IMEI,DATE)\n",
    "data=raw_data#[0:500]\n",
    "print(\"size of data: \",len(data))\n",
    "tvals=numpy.array(data.index.get_level_values(\"locationTimestamp\"))\n",
    "\n",
    "lats=numpy.array(data[\"Latitude\"])\n",
    "dlats=numpy.ptp(lats)\n",
    "plotter.figure()\n",
    "plotter.plot(tvals-min(tvals),lats-numpy.min(lats),'ro',linestyle='--',linewidth=4)\n",
    "plotter.xlabel(\"Timestamp (seconds)\")\n",
    "plotter.ylabel(\"Latitude\")\n",
    "plotter.ylim(-0.1*dlats,1.1*dlats)\n",
    "plotter.show()\n",
    "print(\"h0_latitude\")\n",
    "#plotter.savefig(\"IMEI_0_lat\"+imagesuffix)\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "short example of Box approximation"
   ]
  },
  {
   "cell_type": "code",
r-sowers's avatar
r-sowers committed
   "metadata": {
    "collapsed": false,
    "scrolled": true
   },
r-sowers's avatar
r-sowers committed
   "source": [
    "yvals=lats\n",
    "\n",
    "tvals_short=numpy.array(tvals[0:50])\n",
    "tvals_short-=numpy.min(tvals_short)\n",
    "yvals_short=yvals[0:50]\n",
    "print(\"mean of yvals_short: \",numpy.mean(yvals_short))\n",
    "yvals_short_min=min(yvals_short)\n",
    "dy=numpy.ptp(yvals_short)\n",
    "\n",
    "BoxA=Box(height=0.0003,width=200,shift=515)\n",
    "BoxB=Box(height=-.00026,width=400,shift=2550)\n",
    "tvals_short_finer=numpy.linspace(0,numpy.max(tvals_short),len(tvals_short)*N_finer)\n",
    "yvals_short_finer_box=numpy.mean(yvals_short)\n",
    "yvals_short_finer_box+=numpy.array([BoxA.eval(tt) for tt in tvals_short_finer])\n",
    "yvals_short_finer_box+=numpy.array([BoxB.eval(tt) for tt in tvals_short_finer])\n",
    "plotter.figure()\n",
    "plotter.plot(tvals_short,yvals_short-yvals_short_min,'ro',linestyle='--',linewidth=4)\n",
    "plotter.plot(tvals_short_finer,yvals_short_finer_box-yvals_short_min,'g',linewidth=2)\n",
    "plotter.xlabel(\"Timestamp (seconds)\")\n",
    "plotter.ylabel(\"Latitude\")\n",
    "plotter.ylim(-0.1*dy,1.1*dy)\n",
    "plotter.show()\n",
    "print(\"h0_reduced_boxexample\")\n",
    "#plotter.savefig(\"IMEI_0_short_box\"+imagesuffix)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "constants"
   ]
  },
  {
   "cell_type": "code",
r-sowers's avatar
r-sowers committed
   "metadata": {
    "collapsed": false,
    "scrolled": true
   },
r-sowers's avatar
r-sowers committed
   "source": [
    "TVALS=numpy.array(data.index.get_level_values(\"locationTimestamp\"))\n",
    "SHIFTS=TVALS\n",
    "N_ITER=30\n",
    "\n",
    "\n",
    "print(\"making feature list\",flush=True)\n",
    "FEATURES=[]\n",
    "for s,w in itertools.product(sorted(SHIFTS),sorted(WIDTHS,reverse=True)):\n",
    "    FEATURES.append(Box(height=HEIGHT,width=w,shift=s))    \n",
    "print(\"there are \",len(FEATURES), \"features\", flush=True)\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "run for L2 approximation"
   ]
  },
  {
   "cell_type": "code",
r-sowers's avatar
r-sowers committed
   "metadata": {
    "collapsed": false
   },
r-sowers's avatar
r-sowers committed
   "source": [
    "EML2=L0_EM(data,FEATURES,0)\n",
    "\n",
    "alpha_e=EML2.initialize()\n",
    "  \n",
    "alpha_e=EML2.findfeatures(alpha_e=alpha_e,delta=0,combineFlag=False)\n",
    "print(\"mean of alpha_e\",numpy.mean(alpha_e))\n",
    "print(\"stdev of alpha_e\",numpy.std(alpha_e))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "plot L2 approximation"
   ]
  },
  {
   "cell_type": "code",
r-sowers's avatar
r-sowers committed
   "metadata": {
    "collapsed": false
   },
r-sowers's avatar
r-sowers committed
   "source": [
    "makeplot(EML2,alpha_e,startFlag=False)#,fname=\"fourthharvester\")\n",
    "print(\"h0_L2\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "histogram of alpha_e's for L^2 approximation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
r-sowers's avatar
r-sowers committed
   "source": [
    "print(\"max(alpha_e):\",numpy.max(alpha_e))\n",
    "print(\"min(alpha_e):\",numpy.min(alpha_e))\n",
    "mean_alpha_e=numpy.mean(alpha_e)\n",
    "std_alpha_e=numpy.std(alpha_e)\n",
    "print(\"mean(alpha_e)\",mean_alpha_e)\n",
    "print(\"std(alpha_e)\",std_alpha_e)\n",
    "plotter.figure()\n",
    "n, bins, patches = plotter.hist(alpha_e, bins=100, range=(-1,1), facecolor='green')\n",
    "plotter.xlabel(\"alpha\")\n",
    "plotter.ylabel(\"count\")\n",
    "plotter.show()\n",
    "print(\"h0_L2_hist\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "kappa=1E-10 (small)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false,
    "scrolled": true
   },
r-sowers's avatar
r-sowers committed
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
   "source": [
    "KAP=1E-10 #for box\n",
    "myEM=L0_EM(data,FEATURES,KAP)\n",
    "\n",
    "print(\"L0_EM created\", flush=True)\n",
    "alpha_e=myEM.initialize()\n",
    "dalpha=[]\n",
    "print(\"about to iterate\", flush=True)\n",
    "for n in range(N_ITER):\n",
    "    print(\"n=\",n,flush=True)\n",
    "    alpha_e=myEM.iterate(alpha_e)\n",
    "    dalpha.append(myEM.dalpha)\n",
    "    myEM.findfeatures()\n",
    "    if (myEM.stopFlag):\n",
    "        break\n",
    "        \n",
    "print(\"done\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Show that alpha does not converge"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false,
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "plotter.figure()\n",
    "plotter.plot(dalpha)\n",
    "plotter.xlabel(\"iteration\")\n",
    "plotter.ylabel(\"dalpha/alpha\")\n",
    "plotter.show()\n",
    "print(\"nonconvergencefor\"+makefname(IMEI,KAP))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "DELTA=False #don't threshold\n",
    "COMBINEFLAG=False #don't combine features\n",
    "alpha_e_uncombined=myEM.findfeatures(alpha_e=alpha_e,delta=DELTA,combineFlag=COMBINEFLAG)\n",
    "makeplot(myEM,alpha_e_uncombined)\n",
    "print(makefname(IMEI,KAP,DELTA,COMBINEFLAG))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "print(\"max(alpha_e_uncombined):\",numpy.max(alpha_e_uncombined))\n",
    "print(\"min(alpha_e_uncombined):\",numpy.min(alpha_e_uncombined))\n",
    "mean_alpha_e_uncombined=numpy.mean(alpha_e_uncombined)\n",
    "std_alpha_e_uncombined=numpy.std(alpha_e_uncombined)\n",
    "print(\"mean(alpha_e_uncombined)\",mean_alpha_e_uncombined)\n",
    "print(\"std(alpha_e_uncombined)\",std_alpha_e_uncombined)\n",
    "plotter.figure()\n",
    "n, bins, patches = plotter.hist(alpha_e_uncombined, bins=100, range=(-1,1), facecolor='green')\n",
    "plotter.xlabel(\"alpha\")\n",
    "plotter.ylabel(\"count\")\n",
    "plotter.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "kappa=1E-5 (large)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "KAP=1E-5 #for box\n",
    "myEM=L0_EM(data,FEATURES,KAP)\n",
    "print(\"L0_EM created\", flush=True)\n",
    "alpha_e=myEM.initialize()\n",
    "print(\"about to iterate\", flush=True)\n",
    "N_iter=20\n",
    "for n in range(N_iter):\n",
    "    print(\"n=\",n,flush=True)\n",
    "    alpha_e=myEM.iterate(alpha_e)\n",
    "    myEM.findfeatures()\n",
    "    if (myEM.stopFlag):\n",
    "        break\n",
    "        \n",
    "print(\"done\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "DELTA=False #don't threshold\n",
    "COMBINEFLAG=False #don't combine features\n",
    "alpha_e_uncombined=myEM.findfeatures(alpha_e=alpha_e,delta=DELTA,combineFlag=COMBINEFLAG)\n",
    "makeplot(myEM,alpha_e_uncombined)\n",
    "print(makefname(IMEI,KAP,DELTA,COMBINEFLAG))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "kappa=1.5E-7 (mid)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "KAP=1.5E-7 #for box\n",
    "myEM=L0_EM(data,FEATURES,KAP)\n",
    "\n",
    "print(\"L0_EM created\", flush=True)\n",
    "alpha_e=myEM.initialize()\n",
    "print(\"about to iterate\", flush=True)\n",
    "N_iter=20\n",
    "for n in range(N_iter):\n",
    "    print(\"n=\",n,flush=True)\n",
    "    alpha_e=myEM.iterate(alpha_e)\n",
    "    myEM.findfeatures()\n",
    "    if (myEM.stopFlag):\n",
    "        break\n",
    "        \n",
    "print(\"done\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "DELTA=False #don't threshold\n",
    "COMBINEFLAG=False #don't combine features\n",
    "alpha_e_uncombined=myEM.findfeatures(alpha_e=alpha_e,delta=DELTA,combineFlag=COMBINEFLAG)\n",
    "makeplot(myEM,alpha_e_uncombined)\n",
    "print(makefname(IMEI,KAP,DELTA,COMBINEFLAG))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false,
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "DELTA=0.01 #don't threshold\n",
    "COMBINEFLAG=False #don't combine features\n",
    "alpha_e_uncombined=myEM.findfeatures(alpha_e=alpha_e,delta=DELTA,combineFlag=COMBINEFLAG)\n",
    "makeplot(myEM,alpha_e_uncombined)\n",
    "print(makefname(IMEI,KAP,DELTA,COMBINEFLAG))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "DELTA=0.01 #don't threshold\n",
    "COMBINEFLAG=True #combine features\n",
    "alpha_e_uncombined=myEM.findfeatures(alpha_e=alpha_e,delta=DELTA,combineFlag=COMBINEFLAG)\n",
    "print(\"there are \",myEM.feature_count,\"features\", flush=True)\n",
    "makeplot(myEM,alpha_e_uncombined)\n",
    "print(makefname(IMEI,KAP,DELTA,COMBINEFLAG))\n",
    "intervals=myEM.intervals\n",
    "picklename=\"IMEI_\"+str(IMEI)+\"_intervals.p\"\n",
    "pickle.dump( intervals, open( picklename, \"wb\" ) )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "print(myEM.intervals)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "harvester 1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "IMEI=gd.IMEISet(1)\n",
    "raw_data=gd.get(IMEI,DATE)\n",
    "data=raw_data#[0:500]\n",
    "TVALS=numpy.array(data.index.get_level_values(\"locationTimestamp\"))\n",
    "SHIFTS=TVALS\n",
    "N_ITER=30\n",
    "\n",
    "print(\"making feature list\",flush=True)\n",
    "FEATURES=[]\n",
    "for s,w in itertools.product(sorted(SHIFTS),sorted(WIDTHS,reverse=True)):\n",
    "    FEATURES.append(Box(height=HEIGHT,width=w,shift=s))    \n",
    "print(\"there are \",len(FEATURES), \"features\", flush=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "KAP=1.5E-7 #for box\n",
    "myEM=L0_EM(data,FEATURES,KAP)\n",
    "\n",
    "print(\"L0_EM created\", flush=True)\n",
    "alpha_e=myEM.initialize()\n",
    "print(\"about to iterate\", flush=True)\n",
    "N_iter=20\n",
    "for n in range(N_iter):\n",
    "    print(\"n=\",n,flush=True)\n",
    "    alpha_e=myEM.iterate(alpha_e)\n",
    "    myEM.findfeatures()\n",
    "    if (myEM.stopFlag):\n",
    "        break\n",
    "        \n",
    "print(\"done\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "DELTA=0.01 #don't threshold\n",
    "COMBINEFLAG=False #don't combine features\n",
    "alpha_e_uncombined=myEM.findfeatures(alpha_e=alpha_e,delta=DELTA,combineFlag=COMBINEFLAG)\n",
    "print(\"there are \",myEM.feature_count,\"features\", flush=True)\n",
    "makeplot(myEM,alpha_e_uncombined)\n",
    "print(makefname(IMEI,KAP,DELTA,COMBINEFLAG))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "DELTA=0.01 #don't threshold\n",
    "COMBINEFLAG=True #combine features\n",
    "alpha_e_uncombined=myEM.findfeatures(alpha_e=alpha_e,delta=DELTA,combineFlag=COMBINEFLAG)\n",
    "print(\"there are \",myEM.feature_count,\"features\", flush=True)\n",
    "makeplot(myEM,alpha_e_uncombined)\n",
    "print(makefname(IMEI,KAP,DELTA,COMBINEFLAG))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "harvester 2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "IMEI=gd.IMEISet(2)\n",
    "raw_data=gd.get(IMEI,DATE)\n",
    "data=raw_data#[0:500]\n",
    "TVALS=numpy.array([line[gd.data_idx[\"locationTimestamp\"]] for line in data])\n",
    "SHIFTS=TVALS\n",
    "N_ITER=30\n",
    "\n",
    "print(\"making feature list\",flush=True)\n",
    "FEATURES=[]\n",
    "for s,w in itertools.product(sorted(SHIFTS),sorted(WIDTHS,reverse=True)):\n",
    "    FEATURES.append(Box(height=HEIGHT,width=w,shift=s))    \n",
    "print(\"there are \",len(FEATURES), \"features\", flush=True)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "KAP=1.5E-7 #for box\n",
    "myEM=L0_EM(data,FEATURES,KAP)\n",
    "\n",
    "print(\"L0_EM created\", flush=True)\n",
    "alpha_e=myEM.initialize()\n",
    "print(\"about to iterate\", flush=True)\n",
    "N_iter=20\n",
    "for n in range(N_iter):\n",
    "    print(\"n=\",n,flush=True)\n",
    "    alpha_e=myEM.iterate(alpha_e)\n",
    "    myEM.findfeatures()\n",
    "    if (myEM.stopFlag):\n",
    "        break\n",
    "        \n",
    "print(\"done\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "DELTA=0.01 #don't threshold\n",
    "COMBINEFLAG=False #don't combine features\n",
    "alpha_e_uncombined=myEM.findfeatures(alpha_e=alpha_e,delta=DELTA,combineFlag=COMBINEFLAG)\n",
    "print(\"there are \",myEM.feature_count,\"features\", flush=True)\n",
    "makeplot(myEM,alpha_e_uncombined)\n",
    "print(makefname(IMEI,KAP,DELTA,COMBINEFLAG))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,