
1

CS427 MP3: Reverse Engineering & Refactoring
September 2010

Context

You are facing a software system which represents a simulation of a local area network.

The development team has been very fast in accommodating the initial requirements for the
system and has been able to release version 1.4 of the system, which contains all the
functionality for the first milestone. However, the customer now requests for the remaining
functionalities and the development team fears that the current design is not up to the task.

Having heard of your refactoring expertise, they hired you to have a look at their code
and refactor it appropriately. They do not expect a perfect design, yet they want to be able to add
the remaining functionalities easily. They told you that they have regression tests available.

Getting Started

1. Download the MP3.zip file from the class wiki.

2. In Eclipse, select File > Import.

3. In the window that pops-up, expand the “General” folder and select “Existing Projects into

Workspace”.

4. Click on the “Select archive file” radio button.

5. Select the location of the MP3.zip file that you have just downloaded.

6. At this stage, the project should have been imported and an unzipped version has been created

in your workspace folder.

7. Check it into your group’s repository

Skim the Documentation

You decide to first have a look at the documentation that comes with the system.

8. Open the file LANSimulationDocument.pdf and read its contents.

9. Open the file toDoList and read its contents.

10. Generate the javadoc for the project.

(a) In the Package Explorer, select the javadoc.xml file under the MP3 project.

(b) Right-click on it and select Run As > Ant Build.

Questions in italics are for you to think about. Questions in light magenta are for you to
Answer and submit.

2

(c) Right-click on the MP3 project and select Refresh. You should see the javadoc folder

in your project.

(d) Right-click on the javadoc folder and select Team > Add to svn:ignore. . . . In the

dialog that pops-up, click OK. This step prevents the javadoc folder from being

committed to the repository.

(e) Expand the javadoc folder and select the index.html file. Read through the

documentation.

What are your first impressions about the system? Where would you focus your refactoring
efforts? Discuss with your group partner.

Read all the Code in 5 minutes

Next, you confirm some of your initial impressions by reading the source code.

11. From within Eclipse, read the code. Use the features of Eclipse to help you navigate the code
quickly. For instance, if you are in the middle of a portion of code and want to see where a
class/method is defined, hold on ctrl (or the apple key) and click on the word.

What are your second impressions about the system? Where do you agree or disagree with you
first impressions? Having a better feeling about the code, where would you focus your
refactoring efforts? Discuss with your group partner.

Do a Mock Installation

Finally, you try to run the code and the regression tests that come along with it.

12. Try to compile and run the LANSimulation.java file. You need to pass it the character “s” as
a program argument and turn on assertions on the JVM. See Figure 1.

13. Run the regression tests in the LANTests.java file. The first time you run the tests, one of
them will fail. You need to perform an additional step manually to get it to pass.

14. Change a few lines here and there in the regression tests and the code to verify whether the
regression tests do test the code you are looking at. This step is important so that you can verify
if that part of the code indeed does what you think it should.

15. Have a look at the regression tests and see whether they cover all the use cases.

Figure 1:

Do you fe
tests: can

Extract

One of th
which rep
some of t

What cod

16. The a
an Extrac

the ref
refacto
refacto
refacto

: Passing a p

feel you the c
n you safely

t Method

he things you
presents imp
the duplicate

de smell(s) d

accounting c
ct Method.

For the nex
factorings. I

oring. Look a
orings that yo
oring support

program argu

code base is
start to refa

u might have
portant doma
ed code.

do you detec

code occurs t

xt few sectio
In a Java f
at the help fi
ou still have
t in Eclipse.

ument and tu

ready to be
ctor? Discus

e seen is that
ain logic insi

ct? Explain b

twice within

ons, use the
file, click o
file if you are
 to perform

3

urning on ass

refactored?
ss with your

t there is a c
ide the class

by giving a c

n printDocum

automated
n the Refac
e not sure ho
by hand, bu

sertions.

 How about
r group partn

considerable
s Network. Y

concrete exam

ment. Get rid

refactoring
ctor menu
ow to use on

ut whenever

the quality o
ner.

amount of d
You decide to

mple from th

d of the clone

tools in Ecl
and select
ne of them.
possible, us

of the regres

duplicated co
o first get rid

he code.

es by applyi

lipse to perf
the appropr
There are so
e the automa

ssion

ode
d of

ing

form
riate
ome
ated

4

17. The logging code occurs three times, twice inside requestWorkstationPrintsDocument and
once inside requestBroadcast. Get rid of the clones by applying an Extract Method. Note that
this time the three clones are not exactly the same so you’ll first have to modify the code a bit
before doing the refactoring.

18. Is there any other duplicated code representing important domain logic which should be
refactored? Can you refactor it using Extract Method?

Are you confident that these refactorings did not break the code? Do you believe that these
refactorings are worthwhile? Does the tool do a good job? Discuss with your group partner.

Move Behavior Close to the Data

Having extracted the above methods, you note that none of them is referring to attributes defined
on the class Network, the class these methods are defined upon. On the other hand, these
methods do access public fields from the class Node and Packet.

What code smell(s) do you detect? Explain by giving a concrete example from the code.

19. The logging method you just extracted does not belong in Network because most of the data
it accesses belongs in another class. Apply a Move Method to define the behavior closer
to the data it operates on.

20. Similarly, the printDocument method is also one that accesses attributes from two faraway
classes, yet does not access its own attributes.

21. Are there any other methods that are better moved closer to the data they operate on? If so,
apply Move Method until you’re satisfied with the results.

Are you confident that these refactorings did not break the code? Do you believe that these
refactorings are worthwhile? Does the tool do a good job? Discuss with your group partner.

Eliminate Navigation Code

There is still a piece of duplicated logic left in the code, namely the way we follow the nextNode
pointers until we cycled through the network; logic which is duplicated both in
requestWorkstationPrintsDocument and requestBroadcast (and to a lesser degree in printOn,
printHTMLOn, printXMLOn). This duplicated logic is quite vulnerable, because it accesses
attributes defined on another class and in fact it represents a special kind of navigation code.

What code smell(s) do you detect? Explain by giving a concrete example from the code.

22. Apply an Extract Method on the boolean expression defining the end of the loop, creating
a predicate atDestination.

23. Rewrite the loops driven by the currentNode = currentNode.nextNode into a recursive call
of a send method.

5

Are you confident that these refactorings did not break the code? Do you believe that these
refactorings are worthwhile? Does the tool do a good job? Discuss with your group partner.

Transform Self Type Checks

Another striking piece of duplicated logic can be found in printOn, printHTMLOn,
printXMLOn. However, this time it is a duplicated conditional, and given the extra functionality
(namely the introduction of a Gateway node) one that is likely to change. Thus it is worthwhile
to introduce new subclasses here.

What code smell(s) do you detect? Explain by giving a concrete example from the code.

24. Normally, you should have noticed during Move Behavior Close to Data, that the switch
statements inside printOn, printHTMLOn, printXMLOn should have been extracted and moved
onto the class Node. If you haven’t done that, do it now; and name the new methods printOn,
printHTMLOn, printXMLOn.

25. Create empty subclasses for the different types of Node that do exist (WorkStation, Printer).

26. Patch the constructor clients of Node so that they now create instances of the appropriate
class.

27. Move the code from the legs of the conditional into the appropriate (sub) class, eventually
removing the conditional.

28. Verify all accesses to the type attribute of Node. As long as you find any keep doing a
Transform Self Type Checks or Transform Client Type Checks until you completely
removed them all.

29. Remove the type attribute.

Are you confident that these refactorings did not break the code? Do you believe that these
refactorings are worthwhile? Does the tool do a good job? Discuss with your group partner.

Conclusion

You feel that you’re task is done. You request for a meeting with the development team, to
explain to them how you redesigned their code and how this design makes its better suited for
the new requirements.

