
 10Gbps TCP/IP Stack
Date: February 2015 Version 1.1

XILINX CONFIDENTIAL

TCP & UDP Offload Engines Datasheet Page 1

Xilinx 10Gbps TCP/IP Stack - Datasheet

Introduction
This IP implements a full TCP/IP stack inside an FPGA. As such it supports session maintenance and

control, such as creation and tear-down of TCP sessions, data transmission and reception via UDP

and TCP, as well as basic auxiliary functionality including IP, ARP, ICMP and DHCP. The design

exposes a simple, socket-like user interface, which allows the user to perform the above-mentioned

functionality. It used external DRAM to buffer the segment payload during TCP processing and on-

chip BRAM to maintain all the required data structures.

IP Core Facts

Device Families 7-Series

 IP LUT FF BRAM

Resources Used TCP Offload Engine 13602 13543 508

 UDP Offload Engine 1840 1773 16

 TCP & UDP Offload System Stack 92686 102012 504

Special
Features

Gigabit Transceiver, Xilinx 10G Ethernet PCS/PMA & MAC IP, BlockRAM for all
configurations. 7-seres MIG, External DRAM for TCP Offload Engine

Provided with Core

Documentation

Design Files C/C++ Vivado HLS source and appropriate C/C++ test-benches.
RTL Wrappers and additional modules as appropriate.
System simulation and test-benches using Mentor Graphics Modelsim.
Python scripts for test vector generation.
Xilinx Vivado projects for Xilinx VC709 and Alpha Data boards.

Constraints
Files

XDC constraints files

Design Tool Support

High-Level
Synthesis

Vivado HLS 2015.1

HDL Synthesis Vivado Logic Synthesis 2015.3

Implementation Vivado 2015.3

Verification
Tools

Vivado HLS 2015.3
Mentor Graphics Modelsim 10.1e and above

Support

Provided by Xilinx Labs. Please contact Kimon Karras (kimonk@xilinx.com) or Michaela Blott
(mblott@xilinx.com)

Key Features & Limitations
The key design features are as follows:

mailto:kimonk@xilinx.com

 10Gbps TCP/IP Stack
Date: February 2015 Version 1.1

XILINX CONFIDENTIAL

TCP & UDP Offload Engines Datasheet Page 2

– Fully functional TCP/IP end point on VC709/Alpha Data boards
– UDP support
– 10Gbps sustained line-rate performance
– Supports 10k sessions (and can scale further contingent on BRAM availability)
– Sub-2us latency
– Uses external DRAM for payload buffering (130KBs required per session)

– Basic DHCP Client for IP address configuration
– 3rd party compliant
– Flow control/congestion management
– Out of order processing up to 4 segments (programmable)
– ARP Module with support for 10K entries
– Almost exclusively design in C++ using Xilinx’s Vivado HLS

Key limitations of the designs are:

– No IP fragmentation support
– Various IP and TCP options and flags

 Are ignored if present

– No IPv6 support

Applications
- Telecommunication

- Data Centers

- Computer Networks

- Network Interface Cards

Functional Description
The TCP/IP stack is organized into systems which comprise the engines themselves, as well as several

supporting components which implement the necessary network functionality to enable TCP and

UDP protocol traffic to reach the appropriate engine. These modules comprise:

 An IP handler, which receives frames from the network interface, verifies that this nodes

is indeed the destination node, strips the Ethernet header from the frame and passes it

on to the appropriate module depending on the underlying protocol. Supported

protocols include:

– Address Resolution Protocol (ARP)

– Internet Control Message Protocol (ICMP)

– Transmission Control Protocol over IP (TCP/IP)

– User Datagram Protocol over IP (UDP/IP)

 An ARP Server which answers ARP requests destined for this device and generates ARP

requests to resolve MAC addresses of potential destination while caching the results in

its own ARP cache.

 An ICMP server which support a sub-set of all available ICMP messages. It replies to

ICMP echo requests with ICMP echo replies and generates Destination Unreachable and

TTL expired messages when appropriate.

 A UDP Offload engine which completely processes UDP packets upon their reception or

transmission and passes them on to the application or to the network interface.

 10Gbps TCP/IP Stack
Date: February 2015 Version 1.1

XILINX CONFIDENTIAL

TCP & UDP Offload Engines Datasheet Page 3

 A TCP Offload engine which performs the equivalent functionality for TCP segments. The

TCP Offload engine uses external DRAM to buffer data received or transmitted and a RTL

block which is a hash table and performs the Tuple-to-Session ID look up.

 A DHCP client which can (but doesn’t have to) be used to obtain an IP address for the

device from a DHCP server.

 An Application Multiplexer that allows both a user application and the DHCP client to

use the UDP Offload engine at the same time.

Figure 1 illustrates how these modules are interconnected between themselves as well as the

external interfaces of the system.

Figure 1 – TCP/IP stack architecture

The system interfaces can be broadly sub-divided into three categories:

 Interfaces to the network interfaces

 Interfaces to the MIG controller

 Interfaces to the user application from the TCP Offload engine

 Interfaces to the user application from the UDP Offload engine

 10Gbps TCP/IP Stack
Date: February 2015 Version 1.1

XILINX CONFIDENTIAL

TCP & UDP Offload Engines Datasheet Page 4

System Interfaces
This section provides detailed information on the TCP/IP stack’s external interfaces. All of the

interfaces are AXI4 streams and as such always consist of data bus and a corresponding VALID and

READY signal. Interfaces marked as Extended AXI4S additionally include a KEEP and a LAST signal. All

arithmetic values (e.g. port number & packet lengths) used throughout the interfaces are always

little endian.

Table 1 lists general configuration inputs including MAC and IP address. Table 2 includes the two 64

bit AXI4 stream interfaces that the system uses to connect to the Xilinx 10G MAC IP core. While

other MAC solutions may be used with the system, their interface must conform to that found in

Table 2.

Table 1 – TCP/IP stack configuration signals

Name Direction Type Description

aclk Input Wire Clock input

aresetn Input Wire Active low reset

myMacAddress[47:0] Input Wire System MAC address input

inputIpAddress[31:0] Input Wire System IP address input

dhcpEnable Input Wire Enables (1) or disables (0) DHCP address
assignment

Table 2 – Interface Signals to the Network Interface

Name Direction Type Description

AXI_M_Stream[63:0] Output Extended
AXI4S

Output packet data destined for the
network interface

AXI_S_Stream[63:0] Input Extended
AXI4S

Input packet data from the network
interface

Table 3 lists the interfaces the TCP Offload engine used to communicate with the external DRAM

buffer. There are 4 interfaces in total, 2 for accessing the Rx segment data buffer and 2 for accessing

the Tx segment data buffer. In each case there’s one interface for writing to the buffer and one

interface for reading from it. Each interface consists of two or three AXI4 streams. The first streams

transfers the memory command and the second stream transfers the data. The write interfaces

include a third stream which contains the response to the memory access from the memory

controller.

Table 3 – Interface Signals to the DRAM Memory Controller

Name Direction Type Description

m_axis_rxread_cmd[71:0] Output AXI4S Read Command for the Rx Segment Data
Buffer

m_axis_rxwrite_cmd[71:0] Output AXI4S Write Command for the Rx Segment Data
Buffer

s_axis_rxwrite_sts[7:0] Input AXI4S Status Signal signalling the success or

 10Gbps TCP/IP Stack
Date: February 2015 Version 1.1

XILINX CONFIDENTIAL

TCP & UDP Offload Engines Datasheet Page 5

failure of a write operation to the Rx Buffer

s_axis_rxread_data[63:0] Input Extended
AXI4S

Segment data read out of the Rx Buffer

m_axis_rxwrite_data[63:0] Output Extended
AXI4S

Segment data written into the Rx Buffer

m_axis_txread_cmd[71:0] Output AXI4S Read Command for the Tx Segment Data
Buffer

m_axis_txwrite_cmd[71:0] Output AXI4S Write Command for the Rx Segment Data
Buffer

s_axis_txwrite_sts[7:0] Input AXI4S Status signal notifying of success or failure
of a write operation to the Tx Bufffer

s_axis_txread_data[63:0] Input Extended
AXI4S

Segment data read out of the Tx Buffer

m_axis_txwrite_data[63:0] Output Extended
AXI4S

Segment data written into the Tx Buffer

Table 4 includes all the signals that the TCP Offload engine uses to interface with the user

application. These can broadly be sub-divided into two categories, control signal and data signals,

with each path (Rx and Tx) possessing one of each. The control signals are used to open ports for

listening and other control-related operation, whereas the data signals are used to read and write

segment data from and to the TOE respectively.

Table 4 – Interface Signals from the TCP Offload Engine to the User Application

Name Direction Type Description

s_axis_listen_port[15:0] Input AXI4S Notifies the TOE that this port should be
opened for listening.

m_axis_listen_port_status[7:0] Output AXI4S Reply from the TOE indicating success or
failure in opening a port.

m_axis_notifications[87:0] Output AXI4S Notification from the TOE letting the
application know that data is available in
the Rx buffer. Contains the following fields:

 Session ID [15:0]

 Data Length [31:16]

 Destination IP Address [63:32]

 Destination Port [79:64]

 Session Closed Flag [87:80]

m_axis_rx_read Input AXI4S Used by the application to request data to
be read from the Rx Buffer. It contains the
following fields:

 Session IF [15:0]

 Data Length [31:0]

m_axis_rx_data[63:0] Output Extended
AXI4S

Data being read out from the Rx buffer and
passed over to the user application.

m_axis_rx_metadata[15:0] Output AXI4S Response to a Rx buffer data request
indicating the length of the data read.

s_axis_open_connection[47:0] Input AXI4S Used by the user application to instruct the
TOE to actively open a session to a

 10Gbps TCP/IP Stack
Date: February 2015 Version 1.1

XILINX CONFIDENTIAL

TCP & UDP Offload Engines Datasheet Page 6

specified remote host. Consists of two
fields:

 Remote end IP Address [31:0]

 Remote end Port [47:0]

s_axis_close_connection[15:0] Input AXI4S Used by the user application to notify the
TOE that the session indicated is to be
closed.

m_axis_open_status[23:0] Output AXI4S Response from the TOE informing the user
application of the result of a session open
or close attempt. Contains the following
two fields:

 Session ID [15:0]

 Success Flag [23:0]

s_axis_tx_metadata[15:0] Input AXI4S Notifies the TOE that new data is available
to send by passing it the session ID for
which this data is intended.

s_axis_tx_data[63:0] Input Extended
AXI4S

Used to transfer the packet data to the
TOE.

s_axis_tx_metadata[15:0] Input AXI4S Response from the TOE indicating success
or failure of the data transfer operation.
Possible responses are:

 No space in the buffer (-1)

 No connection to host (-2)

 Length of data written upon
success

The final batch of signals are the ones which enable the UDP Offload engine to communicate with

the application, which are listed in Table 5. The interface is similar to that of the TCP Offload engine,

with the only difference being that there are no control signals on the Tx path. This means that the

user application can send data to any remote host as long as it provides the appropriate IP and port

addresses. Successful communication is of course dependant on the appropriate port being open on

the remote end.

Table 5 - Interface Signals from the UDP Offload Engine to the User Application

Name Direction Type Description

udp_requestPortOpen[15:0] Input AXI4S Input from the application in order to
request that a specific port be opened for
listening on the receive side.

udp_portOpenReply[7:0] Output AXI4S Reply from the UDP Offload engine
indicating whether the requested port was
opened successfully.

udp_rxData[63:0] Output Extended
AXI4S

Data received by the UDP Offload engine
and passed over to the application.

udp_rxMetadata[95:0] Output AXI4S Metadata passed from the UDP Offload
engine to the application on a per packet
basis. They consist of the following fields:

 Source Port [15:0]

 10Gbps TCP/IP Stack
Date: February 2015 Version 1.1

XILINX CONFIDENTIAL

TCP & UDP Offload Engines Datasheet Page 7

 Source IP Address [47:16]

 Destination Port [63:48]

 Destination IP Address [95:64]

udp_txData[63:0] Input Extended
AXI4S

Data that the application provides to the
UDP for transmission.

udp_txLength[15:0] Output AXI4S Length of the packet data to be
transmitted.

udp_txMetadata[95:0] Input AXI4S Metadata passed on to the UDP Offload
engine for data transmission. Format is
identical to the Rx side metadata.

TCP Offload Engine Description

The most sizeable part of the TCP/IP Stack is arguably the TCP Offload Engine, which offloads all TCP

communication from the user application or host processor. It consists of two parallel processing

paths, one for data reception and one for data transmission, joined together by a group of tables

which maintain the state of the TCP sessions. Since TCP mandates that data is buffered upon

reception or before transmission and due to the size of the data that has to be stored, these buffers

are implemented in external DRAM. Two separate DRAM connections are used one for the Rx

segment data buffer and one for the Tx. The interfaces have been thoroughly described in Table 3.

This section will describe the flow of a segment within the TCP Offload Engine in more

detail. The reception of a normal segment will be used as an example here, though it must

be kept in mind that depending on the type of the segment different events and processing

are triggered.

Upon reception of new segment data, the Rx engine first verifies the TCP checksum of this

packet and parses its header to extract the metadata from it. If the checksum is verified

then the metadata is processed and depending on the current state the appropriate action

is performed. Assuming the state of the session for which this packet is destined is open,

then this packet is received, its segment data is written into the Rx Buffer and an event is

sent to the Tx Engine to generate an acknowledgment for this segment. Additionally, a

notification is sent to the user application that there’s new data available in the Rx buffer.

The application can then read the data out over the Rx Application Interface at its own

convenience. The Tx Engine receives the acknowledgment event and creates and sends an

appropriate segment to the sender of the original data thus verifying their reception.

 10Gbps TCP/IP Stack
Date: February 2015 Version 1.1

XILINX CONFIDENTIAL

TCP & UDP Offload Engines Datasheet Page 8

Figure 2 – Block Diagram of the TCP Offload Engine

Most of the input and output interfaces of the TCP Offload engine overlap with the external

interfaces of the full TCP/IP Stack. Thus the descriptions of Table 3 and Table 4 apply to the TCP

Offload Engine.

Revision History
The following table shows the revision history for this document.

Date Version Revision

15/12/2014 1.0 Initial release

24/02/2015 1.1 Title, some wording and explanations

Notice of Disclaimer
Xilinx is providing this product documentation, hereinafter “Information,” to you “AS IS” with no

warranty of any kind, express or implied. Xilinx makes no representation that the Information, or any

particular implementation thereof, is free from any claims of infringement. You are responsible for

obtaining any rights you may require for any implementation based on the Information. All

specifications are subject to change without notice. XILINX EXPRESSLY DISCLAIMS ANY WARRANTY

WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR ANY IMPLEMENTATION

BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT

THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED

WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Except as

stated herein, none of the Information may be copied, reproduced, distributed, republished,

downloaded, displayed, posted, or transmitted in any form or by any means including, but not

limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written

consent of Xilinx.

