

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave Limited. No reproduction is

permitted without prior express written permission of the author

 SOURCE CODE GUIDE

DECARANGING (PC) SOURCE CODE

Understanding and using the DW1000
DecaRanging source code

Version 4.5

This document is subject to change without notice

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 2 of 28

DOCUMENT INFORMATION

Disclaimer

Decawave reserves the right to change product specifications without notice. As far as possible changes to

functionality and specifications will be issued in product specific errata sheets or in new versions of this

document. Customers are advised to check the Decawave website for the most recent updates on this product

Copyright © 2016 Decawave Ltd

LIFE SUPPORT POLICY

Decawave products are not authorized for use in safety-critical applications (such as life support) where a

failure of the Decawave product would reasonably be expected to cause severe personal injury or death.

Decawave customers using or selling Decawave products in such a manner do so entirely at their own risk and

agree to fully indemnify Decawave and its representatives against any damages arising out of the use of

Decawave products in such safety-critical applications.

Caution! ESD sensitive device.

Precaution should be used when handling the device in order to prevent permanent damage

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 3 of 28

DISCLAIMER

This Disclaimer applies to the DW1000 API source code and the “DecaRanging” sample application source code
(collectively “Decawave Software”) provided by Decawave Ltd. (“Decawave”).

Downloading, accepting delivery of or using the Decawave Software indicates your agreement to the terms of this
Disclaimer. If you do not agree with the terms of this Disclaimer do not download, accept delivery of or use the
Decawave Software.

Decawave Software is solely intended to assist you in developing systems that incorporate Decawave
semiconductor products. You understand and agree that you remain responsible for using your independent
analysis, evaluation and judgment in designing your systems and products. THE DECISION TO USE DECAWAVE
SOFTWARE IN WHOLE OR IN PART IN YOUR SYSTEMS AND PRODUCTS RESTS ENTIRELY WITH YOU.

DECAWAVE SOFTWARE IS PROVIDED "AS IS". DECAWAVE MAKES NO WARRANTIES OR
REPRESENTATIONS WITH REGARD TO THE DECAWAVE SOFTWARE OR USE OF THE DECAWAVE
SOFTWARE, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS.
DECAWAVE DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF ANY THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO DECAWAVE SOFTWARE OR THE USE
THEREOF.

DECAWAVE SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY
THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON THE DECAWAVE SOFTWARE
OR THE USE OF THE DECAWAVE SOFTWARE WITH DECAWAVE SEMICONDUCTOR TECHNOLOGY. IN NO
EVENT SHALL DECAWAVE BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR
INDIRECT DAMAGES, HOWEVER CAUSED, INCLUDING WITHOUT LIMITATION TO THE GENERALITY OF
THE FOREGOING, LOSS OF ANTICIPATED PROFITS, GOODWILL, REPUTATION, BUSINESS RECEIPTS OR
CONTRACTS, COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION), LOSSES OR EXPENSES RESULTING FROM THIRD PARTY
CLAIMS. THESE LIMITATIONS WILL APPLY REGARDLESS OF THE FORM OF ACTION, WHETHER UNDER
STATUTE, IN CONTRACT OR TORT INCLUDING NEGLIGENCE OR ANY OTHER FORM OF ACTION AND
WHETHER OR NOT DECAWAVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING
IN ANY WAY OUT OF DECAWAVE SOFTWARE OR THE USE OF DECAWAVE SOFTWARE.

You are authorized to use Decawave Software in your end products and to modify the Decawave Software in the
development of your end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE TO ANY OTHER DECAWAVE INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO
ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including
but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any
combination, machine, or process in which Decawave semiconductor products or Decawave Software are used.

You acknowledge and agree that you are solely responsible for compliance with all legal, regulatory and safety-
related requirements concerning your products, and any use of Decawave Software in your applications,
notwithstanding any applications-related information or support that may be provided by Decawave.

Decawave reserves the right to make corrections, enhancements, improvements and other changes to its software
at any time.

Mailing address: -
Decawave Ltd.,
Adelaide Chambers,
Peter Street,
Dublin 8

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 4 of 28

Copyright (c) 22/04/2015 by Decawave Limited. All rights reserved.

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 5 of 28

TABLE OF CONTENTS

1 INTRODUCTION ... 7

2 BUILDING THE CODE.. 7

3 RUNNING THE CODE.. 7

4 OVERVIEW .. 8

5 DETAILED DESCRIPTION OF DECARANGING CODE STRUCTURE ... 9

5.1 VIRTUAL COM PORT/CHEETAH AND USB INTERFACE... 9

5.2 ABSTRACT SPI DRIVER – SPI LEVEL CODE. ... 9

5.3 DEVICE DRIVER – DW1000 DEVICE LEVEL CODE .. 9

5.4 INSTANCE CODE .. 10

5.5 WINDOWS GUI APPLICATION.. 12

5.6 DW1000 TIME UNITS AND MANIPULATION ... 12

5.7 FOLDER STRUCTURE ... 12

6 RANGING ALGORITHM .. 13

6.1 DECARANGING’S TAG/ANCHOR TWO-WAY RANGING ALGORITHM .. 13

6.2 MESSAGES USED IN DECARANGING’S TAG/ANCHOR TWO-WAY RANGING .. 14

6.2.1 General ranging frame format ... 14

6.2.2 Blink frame format ... 15

6.2.3 Poll message .. 16

6.2.4 Response message ... 16

6.2.5 Final message .. 17

6.2.6 Ranging Initiation message ... 17

6.3 FRAME TIME ADJUSTMENTS .. 18

6.4 FRAME TRANSMIT-TIME ADJUSTMENT .. 18

6.5 FRAME RECEIVE-TIME ADJUSTMENT ... 18

7 CODE / SYSTEM ISSUES ... 19

7.1 ANTENNA DELAY ... 19

8 OPERATIONAL FLOW OF EXECUTION ... 20

8.1 INSTANCE STATE MACHINE .. 20

8.1.1 Initial state: TA_INIT .. 20

8.1.2 State: TA_TXBLINK_WAIT_SEND .. 21

8.1.3 State: TA_TXPOLL_WAIT_SEND ... 21

8.1.4 State: TA_TXE_WAIT .. 21

8.1.5 State: TA_TX_WAIT_CONF ... 22

8.1.6 State: TA_RXE_WAIT .. 22

8.1.7 State: TA_RX_WAIT_DATA ... 22

8.1.8 State: TA_SLEEP_DONE .. 23

8.1.9 State: TA_TXE_WAIT .. 23

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 6 of 28

8.1.10 State: TA_TXFINAL_WAIT_SEND ... 23

8.1.11 State: TA_TX_WAIT_CONF (for Final message TX) .. 23

8.1.12 CONCLUSION ... 24

9 PC USB TO SPI PROTOCOL HANDLING EXPLAINED ... 25

9.1 INTRODUCTION ... 25

9.2 PROTOCOL TO WRITE AND READ DW1000 SPI DATA .. 25

9.3 EXAMPLE ... 26

10 BIBLIOGRAPHY .. 27

11 DOCUMENT HISTORY .. 27

12 MAJOR CHANGES .. 27

12.1 RELEASE 4.3 .. 27

12.2 RELEASE 4.4 .. 27

13 FURTHER INFORMATION ... 28

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 7 of 28

1 INTRODUCTION

This document, “DecaRanging (PC) Source Code Guide” is a guide to the Decawave’s two-way ranging application

source code of the “DecaRanging” ranging PC demo.

Companion documents: “EVK1000 User Guide” gives an overview of the DW1000 Evaluation kit and describes

how to install and operate the DecaRanging Application.

This document discusses the source code of the DecaRanging application, covering the structure of the software

and the operation of the ranging demo application particularly the way the range is calculated.

Section 8 - Operational flow of execution is written in the style of a walkthrough of execution flow of the
software. It should give a good understanding of the basic operational steps of transmission and reception, which
in turn should help integrating/porting the ranging function to customers platforms.

This document relates to: "DecaRanging MP Version 3.03" application version and "DW1000 Device Driver
Version 02.16.00" driver version.

The device driver version information may be found in source code file “deca_version.h”, and the application

version is specified in “DecaRanging_ver.h”.

2 BUILDING THE CODE

The code is built under Microsoft Visual C++ 2010 Express Edition. Once this is installed, simply open the project

file “DecaRanging.vcxproj” and build via a right click on the application within the “Solution Explorer” pane.

3 RUNNING THE CODE

To run DecaRanging.exe on a computer that does not have Visual C++ 2010 installed, the runtime libraries,

“Microsoft Visual C++ 2010 Redistributable Package (x86)” available from Microsoft need to be installed. These

are available at:

HUhttp://www.microsoft.com/download/en/details.aspx?id=5555 U

http://www.microsoft.com/download/en/details.aspx?id=5555

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 8 of 28

4 OVERVIEW

Figure 1 below shows the layered structure of the DecaRanging application, giving the names of the main files

associated with each layer and a brief description of the functionality provided at that layer.

Figure 1: Software layers in DecaRanging

The layers and functions and files involved are described in the following section.

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 9 of 28

5 DETAILED DESCRIPTION OF DECARANGING CODE STRUCTURE

With reference to Figure 1, the identified layers are described in more detail below.

5.1 Virtual COM port/Cheetah and USB interface

The DW1000 is controlled via its SPI bus. There are two ways for the DecaRanging PC application to connect and

control the DW1000 IC on the DW1000 evaluation boards:

a) Via the USB interface – The EVB1000’s on-board ARM microcontroller’s a preinstalled application can

operate as a simple USB to SPI controller, passing the DecaRanging PC applications SPI accesses to/from

the DW1000 IC. Please refer to the EVK1000 User Manual document for details of how to configure and

enable this mode of operation.

b) Via the SPI interface header – The EVK1000 User Manual document for details of how to configure EVB1000

for DW1000 direct SPI access. The DecaRanging PC application can optionally employ a Cheetah USB-to-SPI

convertor control the DW1000 IC directly. This is a legacy operation supported on earlier versions of

DecaRanging. The Cheetah1 USB-to-SPI convertor is a commercial product of Total Phase, Inc. This mode

of operation may be useful to control the DW1000 on a customer developed board (through a suitable

header or wiring) to validate the board performance compared to the EVB1000.

The Decawave’s USB-to-SPI converter is an application that runs on the EVB1000 HW. When using the DecaRanging

application in this mode, the SPI commands are formatted and sent from the PC DecaRanging application through

the Virtual COM port driver (deca_vcspi.c) over the USB interface to the ARM on the EVB1000. There the ARM

USB-to-SPI application reads the commands and talks to the DW1000 though the SPI interface.

The Cheetah USB-to-SPI converter from Total Phase Inc. provides the SPI interface functions on the PC. The Cheetah

comes with USB drivers that need to be installed before using the product, a DLL needed at run time and the

cheetah.c file built into the application. Please refer to Total Phase documentation for more details, at

HUhttp://www.totalphase.com/.

5.2 Abstract SPI Driver – SPI Level code.

The file deca_spi.c provides functions openspi(), closespi(), writetospi() and readfromspi(). These call appropriate

Cheetah SPI or Virtual COM port driver functions.

5.3 Device Driver – DW1000 Device Level Code

The file deca_device_api.h provides a library of API functions to control and configure the DW1000 registers and

implement certain functions for device level control as listed below.

1 Cheetah SPI Host Adapter - These are available from http://www.totalphase.com/products/cheetah_spi/ for USD $350.

http://www.totalphase.com/
http://www.totalphase.com/products/cheetah_spi/

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 10 of 28

The API functions are described in the “DW1000 Device Driver Application Programming Interface (API) Guide”

document.

5.4 Instance Code

The instance code (in instance.c) provides a simple ranging demo application. This instance code sits where the

MAC would normally reside. For expediency in developing the ranging demonstration to showcase ranging and

performance of the DW1000, the ranging demo application was implemented directly on top of the DW1000

driver API.

The ranging demo application is implemented by the state machine in function testapprun(), called from function

instance_run(), which is the main entry point for running the instance code. The instance runs in different modes

(Listener, Tag or Anchor) depending on the role configuration set at the application layer. The Listener mode just

receives messages and reports their reception via the GUI application layer. The Tag and Anchor modes operate

as a pair to provide the two-way ranging demo functionality between two units.

Initially the tag is in a discovery phase where it sends a Blink message that contains its own address, after which it

listens for a Ranging Initiation response from an anchor. If it does not get one it waits for a period (default of 1

second) before blinking again. The listener will listen for any blinks. When anchor mode is chosen the user will

select the tag it wishes to pair with and then the anchor will wait for the blink message from that tag. The anchor

will then pair with the tag when it gets the Blink message from it, and send the Ranging Initiation message to exit

from the Discovery Phase and enter Ranging Phase.

Figure 2 shows the arrangement and general operation of the two-way ranging as implemented by the

DecaRanging application. Section 6 describes the ranging algorithm in more detail including the format of the

messages exchanged and the calculations performed.

Figure 2: Two way ranging in DecaRanging

USBOR

DW1000

EVB

USB

SPI

Cheetah
Set to operate as Anchor

Set to operate as Tag

Poll

Response

Final

Calculate

Range

Tag idles before

initiating another

ranging Poll

Anchor listens

for next Poll

listen

for poll

SPI

DW1000

EVB

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 11 of 28

Figure 3: Discovery and Ranging phase message exchanges

Once the anchor enters the Ranging phase it turns on its receiver and waits indefinitely for a poll message. The

tag sends a Poll message, and then waits for a Response message from the anchor, after which it sends a Final

message. At the end of this exchange the anchor calculates the range to the tag, and sends a ranging report to the

tag for it to display, included in anchor’s next Response message. This report may not be needed in a practical

implementation depending on whether the initiating end needed to know the resulting range. If the anchor

response is not received the tag times out and sends the Poll message again. Section 6 describes the ranging

algorithm in more detail including the format of the messages exchanged and the calculations performed.

As true interrupt handling is not possible via the cheetah or the virtual COM port drivers so the dwt_isr() function

is instead called from instance_run() essentially implementing the device interface by polling for events “RX

Frame Received” or “TX Frame sent”. In porting to a microcontroller, at the discretion of this system integrator,

the dwt_isr() function may be called by system specific handler triggered by the interrupt line from DW1000.

Sitting above this instance level is the windows GUI application that provides the user interface described in

section 2.5 below. The reader is directed to the code in file instance.c and instance_common.c for more details on

this layer. The file instance_log.c contains logging functions used to log received data and events.

Poll

Response

Final

Tag sleeps before

sending another Poll

Anchor listens

for next Poll

Unpaired Tag sends

periodic blinks, listens for

a response and sleepsBlink

Blink

Sleep

Blink

Ranging Init

Sleep

Tag sees the Ranging Init

response to pair with the anchor

Unpaired Anchor is in

listener mode looking for

tags’ blink messages

Anchor decides to pair with

this tag for ranging and sends

the Ranging Init message

Discovery Phase

Anchor calculates the range

and sends the calculated ToF

back to the Tag in the next

Response message

Ranging Phase

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 12 of 28

5.5 Windows GUI Application

The Windows GUI Application (decaranging.cpp) contains the main entry point for the DecaRanging ranging demo

application and also all the windows graphical user interface code.

There is a main window where status lines display the Time of Flight (TOF) and distance estimated. The main

window includes a control panel to pause and resume operation, select tag, anchor and listener roles and to

configure other parameters. Sub-menu dialogues allow for display of registers, accumulator (channel response

graph), timing setup, log file enable, etc.

Separate companion documents: “EVK1000 User Guide” and “DecaRanging Ranging Demo Application (PC

Version) User Guide” give an overview of DW1000 Evaluation kit (EVK1000), and, describe how to install and

operate the DecaRanging Application.

5.6 DW1000 time units and manipulation

File deca_util.c contains functions which are used mainly for converting the DW1000 time units to seconds and

vice versa.

The DW1000 employs 40-bit values for timestamps, the lowest order bit aligning with the IEEE 802.15.4a

standard timestamp recommendation of being 1/128 of a 499.2 MHz clock period. To operate on these in the

windows DecaRanging application uses the 64-bit native int64 supported by VC++ and modern desktop PC CPUs.

In a practical ranging application in the more modestly sized embedded microprocessor it may not be necessary

to operate on 64-bit or even 40-bit numbers since with a moderate response time the complete round trip can fit

into a 32-bit number, and where it doesn’t, shifting left to discard a few of the low-order bits will generally not

reduce the precision of the result.

5.7 Folder structure

Table 1 gives the folder structure of the DecaRanging application source code given along with a brief description

of each folder’s content. The reader is referred to the other sections of this document for more details on the

code structure and organisation.

Table 1: List of folders in the DecaRanging application

Folder Brief description

DecaRanging

 application DecaRanging’s high level application and instance layers

 compiler Standard libraries inclusions

 decadriver DW1000 device driver

 platform
High level driver (including interrupt management) for
various external and DW peripherals

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 13 of 28

6 RANGING ALGORITHM

This section describes the ranging algorithm used in the DecaRanging ranging demo application. In contrast to

some earlier versions of DecaRanging demo, the ranging algorithm in this code is quite efficient for two-way

ranging requiring just three messages to be exchanged for an accurate range to be calculated. This is described

below.

6.1 DecaRanging’s Tag/Anchor Two-way ranging algorithm

For this algorithm one end acts as a Tag, periodically initiating a range measurement, while the other end acts as

an anchor listening and responding to the tag and calculating the range.

 The tag sends a Poll message addressed to the target anchor and notes the send time, TSP. The tag listens

for the Response message. If no response arrives after some period the tag will time out and send the

poll again.

 The anchor listens for a Poll message addressed to it. When the anchor receives a poll it notes the receive

time TRP, and sends a Response message back to the tag, noting its send time TSR.

 When the tag receives the Response message it notes the receive time TRR and sets the future send time

of the Final response message TSF, (a feature of DW1000), it embeds this time in the message before

initiating the delayed sending of the Final message to the anchor. It will also take the ToF from the

previous ranging exchange and display the distance.

 The anchor receiving this Final response message (at TRF) now has enough information to work out the

range. Tround1= TRR - TSP; Treply1= TSR – TRP ; Tround2= TRF - TSR; Treply2= TSF – TRR.

 It is to be noted that, for small ranges, a received signal level bias correction has to be applied to

calculated raw range. More details about this bias correction can be found in APS011 “Sources of error in

TWR schemes”.

 In the DecaRanging ranging demo the anchor will send the calculated ToF to the Tag to give it something

to display. This ToF will be sent in the next Response message. Figure 4 shows this exchange and gives

the formula used in the calculation of the range.

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 14 of 28

Figure 4: Range calculation in DecaRanging

 After this the anchor turns on its receiver again to await the next poll message, while the tag meanwhile

counts off the delay period to the next ranging attempt.

6.2 Messages used in DecaRanging’s Tag/Anchor Two-way ranging

Five messages are employed in the tag/anchor two-way ranging, two in the Discovery phase (the blink and

ranging initiation messages) and three in the Ranging phase (the poll message, the response message, the final

message), as shown in Figure 3. Although these follow IEEE message conventions, these are NOT standard RTLS

messages, the reader is referred to ISO/IEC 24730-62 (currently a draft international standard) for details of

message formats being standardised for use in RTLS systems based on IEEE 802.15.4 UWB. The formats of the

messages used in the demo are given below.

6.2.1 General ranging frame format

The general message format is the IEEE 802.15.4 standard encoding for a data frame. Figure 5 shows this format.

The two byte Frame Control octets are constant for the DecaRanging application because it always uses data

frames with 8-octet (64-bit) source and destination addresses, and a single 16-bit PAN ID (value 0xDECA). The

only exception is the Blink message which is described in 6.2.2 below. In a real 802.15.4 network, the PAN ID

might be negotiated as part of associating with a network or it might be a defined constant based on the

application.

Tag

Anchor

TX

Tprop Tprop

RX

RX TX
Treply1

Tround1

time

RX

TX

Treply2

Tprop

RMARKER

Tround2

Poll

Poll Resp

Resp Final

Final

The Final message communicates the tag’s Tround and Treply times
to the anchor, which calculates the range to the tag as follows:

Tround1 × Tround2 ̶ Treply1 × Treply2

Tround1 + Tround2 + Treply1 + Treply2

Tprop =

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 15 of 28

Figure 5: General ranging frame format

The sequence number octet is incremented modulo-256 for every frame sent, in line with IEEE rules.

The source and destination addresses are 64-bit numbers programmed uniquely into each device (during

EVB1000 manufacture). This can be used by the application to give each DW1000 based product a unique

address.

The 2-octet FCS is a CRC frame check sequence. This is generated automatically by the DW1000 IC (under

software control) and appended to the transmitted message.

The content of the ranging message portion of the frame depends on which of the three ranging messages it is.

These are shown in Figure 7 and described in sections 6.2.3 to 6.2.6. In these only the ranging message portion of

the frame is shown and discussed. This data is encapsulated in the general ranging frame format of Figure 5 to

form the complete ranging message in each case.

6.2.2 Blink frame format

The special Blink message frame format is used for sending of the Tag Blink messages. The blink frame is simply

sent without any additional application level payload, i.e. the application data field of the blink frame is zero

length. The result is a 12-octet blink frame. The encoding of the minimal blink is as shown in Figure 6.

Figure 6: the 12 octet minimal blink frame

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit7

Frame Control (FC)

1 0 0

SEC PEND

0 1 0

Frame

Control (FC)

Sequence

Number
PAN ID

2 octet 1 octet 2 octets

Destination

Address

8 octets

Ranging

Message

Variable # octets

FCS

2 octets

Bit 8 Bit 9 10 11 12 13 14 15

0 0 0 0 SrcAddrMode

Source

Address

8 octets

1 1
64-bit

Data Frame

0 0 DestAddrMode

1 1
64-bit

ACK

0x41 0xCC 0xCA 0xDE

0, 1 2 3, 4 5 to 12 13 to 20 21 and upFrame buffer indices:

0xC5 Seq. Num

1 octet FC 1 octet

64-bit Tag ID

8 octets

FCS

2 octets

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 16 of 28

Figure 7: Ranging message encodings

6.2.3 Poll message

The poll message is sent by the tag to initiate a range measurement. For the poll message, the ranging message

portion of the frame is a single octet, with value: 0x21.

6.2.4 Response message

The response message is sent by the anchor in response to a poll message from the tag. For the response

message a single octet would be sufficient, but to allow for some future expansion possibilities a more complex

encoding has been included. Table 2 lists and describes the individual fields within the response message.

Table 2: Fields within the ranging response message

Octet #’s Value Description

1 0x10 This octet 0x10 identifies this as an anchor response controlling the activity of the tag

2 0x02 This activity octet tells the tag to continue with the ranging exchange

3 to 4 0x0000 This two octet parameter is unused for activity 0x02.

Function

code

1 octet

Response Message

Poll Message

Final Message

Function

code

1 octet

Function

code

1 octet

Activity

1 octet

Activity

Parameter

2 octets

Poll Message

TX Time-Stamp

5 octets

Response Message

RX Time-Stamp

5 octets

Embedded Predicted

Final TX Time-Stamp

5 octets

21Frame buffer indices:

21Frame buffer indices: 22

21Frame buffer indices: 22 to 26 27 to 31 32 to 36

0x21

0x10 0x02 0x0000

0x29 - - -

23 and 24

Ranging Init Message Function

code

1 octet

21Frame buffer indices:

0x20

Response

Delay Anc

2 octets

-

24 to 25

Tag 16-bit

Address

2 octets

-

22 and 23

Previous ToF

5 octets

25 to 29

-

Response

Delay Tag

2 octets

-

26 to 27

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 17 of 28

Octet #’s Value Description

5 to 9 - This five octet field is the ToF from the previous ranging exchange. 40-bit DW1000
time units.

6.2.5 Final message

The final message is sent by the tag after receiving the anchor’s response message. The final message is 16 octets

in length. Table 3 lists and describes the individual fields within the final message.

Table 3: Fields within the ranging final message

Octet #’s Value Description

1 0x29 This octet identifies the message as the tag “Final” message

2 to 6 - This six octet field is the TX timestamp for the tag’s poll message, i.e. the precise time
the frame was transmitted.

7 to 11 - This six octet field is the RX timestamp for the response poll message, i.e. the time the
tag received the response frame from the anchor.

12 to 16 - This six octet field is the TX timestamp of this final message, i.e. the precise time the
frame was (or will be) transmitted, this needs to be calculated by the tag as described
in section 6.2.5.1 below.

6.2.5.1 Final message embedded TX timestamp

The final message includes a field that is its own transmit timestamp. The tag microprocessor needs to pre-

calculate this and embed it in the message buffer before initiating the transmission of the final message.

Assuming that it has already calculated DT, the reply time to programme as the delayed send time for the

message, the embedded time is then just DT masked to clear the lower 9 bits, plus the TX antenna delay value.

In the DecaRanging source code this calculation is done in file instance.c in state TA_TXFINAL_WAIT_SEND.

6.2.6 Ranging Initiation message

Upon receiving the Blink message the unpaired anchor will send the Ranging Initiation message to the tag that

has sent the blink message.

The ranging initiation message is 7 octets in length. Table 4 lists and describes the individual fields within the

ranging initiation message.

Table 4: Fields within the ranging initiation message

Octet #’s Value Description

1 0x20 This octet 0x20 identifies the message as a range report

2 to 3 - This 16-bit field can be used by Tag to change to use the specified 16-bit address.
Instead of 64-bit address.

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 18 of 28

Octet #’s Value Description

4 to 5 - This 16-bit bit field gives the anchor response time to be used in the following ranging
exchange:

- bit 0 to 14: value
- bit 15: 0 for microseconds, 1 for milliseconds

6 to 7 - This 16-bit bit field gives the tag response time to be used in the following ranging
exchange:

- bit 0 to 14: value
- bit 15: 0 for microseconds, 1 for milliseconds

6.3 Frame Time Adjustments

Successful ranging relies on the system being able to accurately determine the TX and RX times of the messages

as they leave one antenna and arrive at the other antenna. This is needed for antenna-to-antenna time-of-flight

measurements and the resulting antenna-to-antenna distance estimation.

The significant event making the TX and RX times is defined in IEEE 802.15.4 as the “Ranging Marker (RMARKER):

The first ultra-wide band (UWB) pulse of the first bit of the physical layer (PHY) header (PHR) of a ranging frame

(RFRAME)”. The time stamps should reflect the time instant at which the RMARKER leaves or arrives at the

antenna. However, it is the digital hardware that marks the generation or reception of the RMARKER, so

adjustments are needed to add the TX antenna delay to the TX timestamp, and, subtract the RX antenna delay

from the RX time stamp.

In DecaRanging the user sets the antenna delay on the main page control panel. The value specified is divided

equally between TX and RX antenna delays. In a real system where multiple vendors may be operating it would

be more important to attribute individual TX and Rx delays appropriately. The default value has been

experimentally set by adjusting it until the reported distance averaged to be the measured distance. The need to

re-tune the Antenna Delay is discussed in section 5.1 below.

The individual adjustments made to correct the timestamps are discussed below.

6.4 Frame Transmit-Time Adjustment

In the DW1000, the transmit time stamp is made as the RMARKER is sent by the digital circuitry.

If the TX_ANTD register value is programmed it will be automatically added to the TX timestamp stored in the

register, and no software adjustment is necessary.

6.5 Frame Receive-Time Adjustment

In the DW1000, the receive time stamp is initially made as an appropriate event representing the receipt of the

RMARKER detected digital circuitry, and then a first path seek algorithm is run to find the first path more

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 19 of 28

precisely, and finally the value is adjusted by subtracting the configured RX antenna delay value. This final

adjusted RX timestamp is saved in the register and the software does not have to make any further adjustments

to the time of arrival read from the IC register.

7 CODE / SYSTEM ISSUES

7.1 Antenna Delay

The antenna delay may need changing if operating modes are changed, i.e. changing channel frequency or PRF

might mean that delay needs to be changed up/down. The DecaRanging software takes care of the adjustment

when PRF setting is changed, maintaining separate antenna delays for 16 MHz or 64 MHz PRF values.

Note: If the antenna delay value is too large, it results in negative RTD calculation results (internally to the

software) and these RTD values are discarded as bad and no RTD / distance measurement will be reported. In

using the system, if the communication seems to be working, (i.e. TX and RX message counts show interaction

without errors), but the Time-of-Flight status lines are not updating, then this may be because the antenna delay

is set to too large a value. This can be checked by clearing the antenna delays to zero. To tune the antenna delay

to the correct value is a process of trial and error, tweaking the antenna delay until the average distance reported

matches the real antenna-to-antenna distance measured with a tape measure.

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 20 of 28

8 OPERATIONAL FLOW OF EXECUTION

This section is intended to be a guide to the flow of execution of the software as it runs, reading this and

following it at the same time by looking at the code should give the reader a good understanding of the basic way

the software operates as control flows through the layers to achieve transmission and reception. This

understanding should be an aid to integrating/porting the ranging function to other platforms.

To use this effectively, the reader is encouraged to browse the source code at the same time as reading this

description, and find each referred item in the source code and follow the flow as described here.

8.1 Instance state machine

The instance state machine delivers the primary DecaRanging function of range measurement. The instance state

machine does two-way ranging by forming the messages for transmit (TX), commanding their transmission, by

commanding the receive (RX) activities, by recording the TX and RX timestamps, by extracting the remote end’s

TX and RX timestamps from the received Final messages, and, by performing the time-of-flight calculation.

The instance code is invoked using the function testapprun(), the paragraphs below trace the flow of execution of

this instance state machine from initialisation through the TX and RX operations of a ranging exchange. This is

done primarily by looking at the operation of the Tag end. It starts by sending a blink message and waiting to

receive a ranging initiation message before starting ranging exchange. Then it will send a Poll message, await a

Response and then send the Final message to complete the ranging exchange.

The anchor transitions are not discussed in detailed here, but after reading the description of tag execution flow

below the reader should be well equipped to similarly follow the anchor flow of execution.

The instance_run() function is the main function for the instance, it can be run periodically or as a result of a

pending interrupt. It checks if there are any outstanding events that need to be processed and calls the

testapprun() function to process them. It also reads the message/event counters and checks if any timers have

expired. Below paragraphs describe the testapprun() sate machine in detail:

8.1.1 Initial state: TA_INIT

Function testapprun() contains the state machine that implements the two-way ranging function, the part of the

code executed depends on the state and is selected by the “switch (inst->testAppState)” statement at the

start of the function. The initial state “case TA_INIT”2 performs initialisation and determines the next state to

run depending on whether the “inst->mode” is selecting Tag or Anchor operation. Let’s assume it is a tag and

follow the execution of the next state. In the case of a tag we want to send a Blink message to allow an anchor to

discover the tag and then initiate a ranging exchange, thus the state “inst->testAppState” is changed to

“TA_TXBLINK_WAIT_SEND”.

2 The “TA_” prefix is because these are states in the “Test Application”.

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 21 of 28

8.1.2 State: TA_TXBLINK_WAIT_SEND

In the state “case TA_TXBLINK_WAIT_SEND”, we want to send the Blink message, so firstly we set up the message

frame control data and then fill the rest of the message with the tag address. After sending the Blink message

(using immediate send option with response expected parameter set), the state machine state will be changed to

“TA_TX_WAIT_CONF”, where the Tag awaits confirmation of the frame transmission.

As the testapprun() state machine state is set to “TA_TX_WAIT_CONF”, and as that state has more than one use,

“inst->previousState = TA_TXBLINK_WAIT_SEND” is set to as a control variable.

Before starting the transmission we also configure the receiver turn on delay and RX frame wait timeout. Receiver

turn on delay is specified by inst->rnginitW4Rdelay_sy and RX frame wait timeout is specified by inst-

>fwtoTimeB_sy. The delays and timeouts are calculated as part of initialisation of the application by

instancesetreplydelay() function.

As the transmission command had DWT_RESPONSE_EXPECTED set the receiver will turn on automatically and then

time out if no message is received. After timing out the tag will go to IDLE mode and wait blink_period_ms to

restart blinking (this is done in “TA_SLEEP_DONE” state).

8.1.3 State: TA_TXPOLL_WAIT_SEND

In the state “case TA_TXPOLL_WAIT_SEND”, we want to send the poll message, so firstly we set up the destination

address and then we call function setupmacframedata(), which sets up the all the other parameters/bytes of the

poll message.

The testapprun() state machine state is set to “TA_TX_WAIT_CONF”, and as that state has more than one use,

“inst->previousState = TA_TXPOLL_WAIT_SEND” is set to as a control variable.

Note: In the case if a tag sending the poll message, this message is sent immediately. However in the case of the

anchor responses (state “case TA_TXRESPONSE_WAIT_SEND” not documented here), and tag’s final message (state

“case TA_TXFINAL_WAIT_SEND” as described in section 8.1.10 below), it is required to send the message at an

exact and specific time with respect to the arrival of the message soliciting the response. To do this we use

delayed send. This is selected by the “delayedTx” second parameter to function instancesendpacket().

We also configure and enable the RX frame wait timeout, so that if the response is not coming, the Tag times-out

and restarts the ranging.

8.1.4 State: TA_TXE_WAIT

This is the state for the tag which is called before the next ranging exchange starts (i.e. before the sending of next
poll message) or before the next blink message is sent.

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 22 of 28

8.1.5 State: TA_TX_WAIT_CONF

In the state “case TA_TX_WAIT_CONF”, we await the confirmation that the message transmission has completed.

When the IC completes the transmission a “TX done” status bit is picked up by the device driver interrupt routine

which generates an event which is then processed by the TX callback function (instance_txcallback()). The

instance, after a confirmation of a successful transmission, will read and save the TX time and then proceed to the

next state (TA_RXE_WAIT) to turn on the receiver and await a response message. The next state is thus set

“inst->testAppState = TA_RXE_WAIT”. See 8.1.6 below for details of what this does.

8.1.6 State: TA_RXE_WAIT

This is the pre-receiver enable state. Here the receiver is enabled and the instance will then proceed to the

TA_RX_WAIT_DATA where it will wait to process any received messages or will timeout. Since the receiver will be

turned on automatically (as we had DWT_RESPONSE_EXPECTED set as part of TX command), the state changes to

TA_RX_WAIT_DATA to wait for the expected response message from the Anchor or timeout. We use automatic

delayed turning on of the receiver as we know the exact times the responses are sent using delayed

transmissions. It is possible (and desirable for power efficiency) to delay turning on the receiver until just before

the response is expected. The next state is: “inst->testAppState = TA_RXE_WAIT_DATA”.

Note: If a delayed transmission fails (i.e. due to starting it too late) then the recovery disables the transceiver and

the receiver will then be enabled normally in this state.

8.1.7 State: TA_RX_WAIT_DATA

The state “case TA_RX_WAIT_DATA” is quite long because it handles all the RX messages expected. This is not very

robust behaviour. The tag should really only look for the messages expected from the anchor, (and vice versa).

We “switch (message)”, and handle message arrival as signalled by a received event. If a good frame has been

received (SIG_RX_OKAY) we look at the first byte of MAC payload data (beyond the IEEE MAC frame header bytes)

and “switch(rxmsg->messageData[FCODE])”. FCODE is a Decawave defined identifier for the different

DecaRanging messages; see Figure 7, for details.

For the point of view of the discussions here the tag is awaiting the anchor’s response or ranging initiation

message so we would expect the FCODE to match “RTLS_DEMO_MSG_ANCH_RESP” or “RTLS_DEMO_MSG_RNG_INIT”

when in Discovery phase. In this code, we note the RX timestamp of the message “anchorRespRxTime” and

calculate “delayedReplyTime” which is when we should send the Final message to complete the ranging

exchange. In this case our next (and subsequent states) are set to:

 inst->testAppState = TA_TXFINAL_WAIT_SEND ; // then send the final response

The state “case TA_RX_WAIT_DATA” also includes code to handles the “SIG_RX_TIMEOUT” message, for the case

where the expected message does not arrive and the DW1000 triggers a frame wait timeout event. The DW1000

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 23 of 28

has an RX timeout function to allow the host wait for IC to signal either data message interrupt or no-data

timeout interrupt3. When the timeout happens the Tag will go back to restart the ranging exchange.

 inst->testAppState = TA_TXE_WAIT ;
 inst->nextState = TA_TXPOLL_WAIT_SEND ; // send next poll

8.1.8 State: TA_SLEEP_DONE

In this state the microprocessor will wait for the expiration of the blink_period_ms or poll_period_ms timeout,

depending on the next message to send. Then the state will change to inst->testAppState = inst->nextState;

8.1.9 State: TA_TXE_WAIT

In this state “case TA_TXE_WAIT”, the Tag will update the displayed range from anchor’s report and proceed to

TA_SLEEP_DONE state if next frame to transmit is a blink or a poll. If next frame to transmit is a final message, tag

will proceed to state TA_TXFINAL_WAIT_SEND.

8.1.10 State: TA_TXFINAL_WAIT_SEND

In the state “case TA_TXFINAL_WAIT_SEND”, we want to send the final message.

The final message includes embedded the TX time-stamp of the tag’s poll message “inst->tagPollTxTime” along

with the RX time-stamp of the anchors response message “inst->anchorRespRxTime” and the embedded

predicted (calculated) TX time-stamp for the final message itself which includes adding the antenna delay “inst-

>txantennaDelay”.

So, now the final message is composed and we call the “setupmacframedata()” function to prepare the rest of

the message structure. The final message is sent at a specific time with respect to the arrival of the message

soliciting the response, this is done using delayed send, selected by the “delayedTx” second parameter to

function “instancesendpacket()”.

We finish the processing by setting control variable “inst->previousState = TA_TXFINAL_WAIT_SEND” to

indicate where we are coming from and we set the “inst->testAppState = TA_TX_WAIT_CONF” selecting this as

the new state for the next call of the “testapprun()” state machine.

8.1.11 State: TA_TX_WAIT_CONF (for Final message TX)

In the state “case TA_TX_WAIT_CONF”, (as detailed in section 8.1.5 above) we await the confirmation that the

message transmission has completed.

When we get this, we use the “inst->previousState == TA_TXFINAL_WAIT_SEND” to identify that we are a tag

who has just sent the final and we go on to send another poll message (perhaps after a period of inactivity).

3 This idea here (although no code is yet written for this) is to facilitate the host processor entering a low power state until

awakened by either the RX data arriving or the no data timeout.

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 24 of 28

8.1.12 CONCLUSION

That should be enough of a walkthrough of the state machine that the reader should be able to decipher the

anchor activity (and any remaining activity of tag).

In summary the anchor waits indefinitely in the state “case TA_RX_WAIT_DATA” until it receives a poll message.

Once it receives the poll it starts the ranging exchange and finishes with a calculation of ToF (range) report, which

it reports to the GUI.

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 25 of 28

9 PC USB TO SPI PROTOCOL HANDLING EXPLAINED

9.1 Introduction

The DecaRanging PC application can communicate to the DW1000 on the EVB1000 board over the Virtual COM

port (over USB) interface via “USB-to-SPI” application running on the EVB1000 STM32 processor.

The EVK1000 uses STMicroelectronics STM32 ARM cortex M3 microcontroller and employs the STM32 USB driver

from STMicroelectronics. There is a “USB to SPI” application which operates on the EVB1000 microcontroller to

read and write data from/to the DW1000 and is controlled from the DecaRanging PC application. When EVB1000

is connected to the PC in this “USB to SPI” mode it appears as a COM port see Figure 8.

Application (PC) software can be written which writes and reads to the COM port needing no knowledge of the

translation happening in the provided driver and hardware combination. The protocol used over the USB virtual

COM port, between the DecaRanging PC application and the EVK1000 software, and used for DW1000 SPI access,

is described below:

9.2 Protocol to Write and Read DW1000 SPI data

Connect the EVB1000 to the PC and the Device Manager will show STMicroelectronics Virtual COM port.

Figure 8: Device Manager Window showing ST Virtual COM Port

On starting up the Decaranging PC application will get a handle to the COM port and try to connect to the “USB-

to-SPI” application on the EVB. This is done by sending "deca?" string and checking the reply. Each COM port with

STMicroelectronics Virtual COM Port name will be checked in turn. The reply should be "EVB1000 USB2SPI X.0",

where X can be 1 or 2. The deca_vcspi.c function findandopenEVB1000COMport() is used for this.

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 26 of 28

Then to do an SPI write or read transaction, the PC application sends a command comprising of at least 8 bytes, as

defined below:

<0x02> - this is the first byte and specifies the start of command

<0x0X> - here the LSB specifies the SPI speed and SPI read/write operation, bit 0 = 1 for write, 0 for read

<0xTL> - low byte of 16-bit total length of the command

<0xTH> - high byte of 16-bit total length of the command

<0xBL> - low byte of 16-bit body length of the command

<0xBH> - high byte of 16-bit body length of the command

<N> - number of data bytes as passed into SPI read/write function (header + body)

<0x03> - this is the last byte and ends the command

Note: body length is the length of the SPI data buffer, header length is the length of SPI header and

total length comprises 7 bytes + body length + header length, hence the minimum 9 byte length required for a

write operation and 8 bytes for reading (the reading does not have any body length fields).

After sending the above command to the EVB, the application waits for a response. In the case of an SPI write the

response is <0x02><0x00><0x03>, for reading the response is <0x02><0x00><read data bytes><0x03>.

9.3 Example

To read device ID, i.e. read four bytes from register 0x0, we send following to the EVB1000 (8 bytes):

<0x02><0x00><0x08><0x00><0x00><0x00><0x00><0x03>

and the EVB sends back the following (7 bytes):

<0x02><0x00><0x30><0x01><0xCA><0xDE><0x03>

The register read of register 0x0 returned 0xDECA0130.

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 27 of 28

10 BIBLIOGRAPHY

Ref Author Date Version Title

[1] Decawave Current DW1000 Data Sheet

[2] Decawave Current DW1000 User Manual

[3] Decawave Current EVK1000 User Manual

[4] Decawave Current
DecaRanging Ranging Demo Application (PC

Version) User Guide

[4] IEEE 2011

IEEE 802.15.4‐2011 or “IEEE Std 802.15.4™‐2011”
(Revision of IEEE Std 802.15.4-2006).

IEEE Standard for Local and metropolitan area
networks— Part 15.4: Low-Rate Wireless Personal
Area Networks (LR-WPANs). IEEE Computer Society
Sponsored by the LAN/MAN Standards Committee.

Available from http://standards.ieee.org/

11 DOCUMENT HISTORY

Table 5: Document History

Revision Date Description

3.7 20th December 2013 Initial release for production device.

4.2 11th November, 2014 Scheduled update

4.3 30th September, 2015 Scheduled update

4.4 17th February, 2016 Fix for reference not found, changed DecaWave to Decawave

4.5 22nd June 2018 Document update with new logo

12 MAJOR CHANGES

12.1 Release 4.3

Page Change Description

All Update of version number to 4.3

All Various typographical changes

12.2 Release 4.4

Page Change Description

All Update of version number to 4.4

http://standards.ieee.org/

DecaRanging PC Source Code Guide

© Decawave 2016 This document is confidential and contains information which is proprietary to Decawave

Limited. No reproduction is permitted without prior express written permission of the author Page 28 of 28

All Change DecaWave to Decawave, and copyright date to 2016

12, 14 Fix “Error! Reference source not found.”

Chapter 9 Added USB to SPI protocol explanation

13 FURTHER INFORMATION

 For further information on this or any other Decawave product, please refer to our website www.decawave.com or contact a sales

representative at sales@decawave.com

http://www.decawave.com/
mailto:sales@decawave.com

