Improving Software Engineering in Academia

Samuel Grayson

Changes from last time

Of software virtues (e.g. correctness, adaptability, extensibility, readability,
repeatability, maintainability), I have chosen to single out correctness and
adaptability, because they are the easiest to motivate. Then, I separate those two
as goals from maintainability, which is more like a method.

I have addressed going broad versus going deep, by saying I want to know what
is broadly important, and then future work can deep-dive on individual practices
(explained in Future Work). I have also changed “tools” to “classes of tools,” as
individual tools go in and out of fashion.

I have written explicitly about threats to validity: self-assessment biases, biases
in mined data, correlation doesn’t imply causation, and demographic confounding
factors.

I have renamed “classes of software tools and management activities” to “software
development practices (SDP).” I am open to new names, but they should be short
or have acronyms.

I have included effort-estimation in the survey. This way I can answer which SDP
has the greatest “bang for the buck” of effort.

Introduction'

90% of researchers surveyed use research software to carry out their research,
and more than half develop it themselves [4]. Researchers develop software, and
software informs the researchers. However, incorrectness limits software’s ability
to inform researchers, and non-adaptability makes it more difficult for researchers
to develop software. Here, correctness means the the software behaves as the
programmer expects it to, and adaptability means the software can be easily
modified to support a change in functionality requirements or environment.

IDarko and Dan, feel free to leave comments in the footnotes like this.

... develop ...

... develop ...

Spaghetti codS

&

Bugs

Software

Researchers

Researchers Software

. .. informs ...
... informs ...
Viewer does not support full SVG 1.1

Researchers should care about correctness of software because software is a
necessary condition for the correctness of the containing study despite being easy
to get wrong. This makes it a ‘weak link’ for correctness. For example, Neupane
et al. [5] find a bug in a the code released by Willoughby et al. [8] five years after
its publication, and by that time it had been cited more than 200 times. The
bug was subtle enough to evade notice despite a high citation count, and the bug
potentially calls into question the some of those 200 references.

Researchers should care about adaptability because small investments in
adaptability will reduce the amount of time they themselves spend adapting their
code to inevitable changes in requirements. Even “one-off” code still benefits from
adaptability if it is developed iteratively.

Rosene defines maintainability as achieving the ability to trace causality backwards
and being able to modify the program without breaking it [6]. Correctness and
adaptability are properties of the behavior of software and not easy to measure
directly; maintainability is a property of the software itself and possible to measure
directly through quantitative metrics (TODO: state metrics and citations).
But they are related: maintainability implies adaptability by its definition, and
maintainability implies a higher probability of correctness, because it forces errors
to be more noticeable (TODO: citations). For example, Hettrick originally wrote
a data analysis in Excel formulae, but then rewrote them in scripts to improve
maintainability and other software virtues [3]. In this process, Hetrtrick found
two bugs in the original Excel implementation.

Research Questions

1. What is the distribution of maintainability in existing research software?

2. How effective per unit of effort is each software development practice (SDP;
class of tools and activities) for ensuring maintainability? See the appendix
for the SDP I want to test.

TODO: Write a logic model.

Prior work

Vandewalle determined the proportion of publications with available source code
[7]. Availability important but distinct from maintainability, and maintainability
is more immediately useful for the original authors. Furthermore, a common
reason software is not available is that the authors are afraid it isn’t maintainable
enough [1], so improving maintainability might improve availability.

Eisty et al. have studied the effect of code review in great detail [2] and concluded
that most research software engineers find the practice valuable. This is a good
result, but it would be even better to be able to compare code review from other
management activities. It might be the case that people will find all of them
broadly useful, but they cannot implement every one of those practices due to
resource constraints. Once this study identifies the most effective per unit of
effort practices, one could study in depth those particular interventions.

TODO: more research on how to leverage learnings from software engineering
in an industry-context. I suspect they will help, but that they might not transfer
over exactly due to the open-ended nature of research software.

Methods

Survey

Next, I will seek out approval from administrators at institutions to email randomly-
selected individual RSEs, PhD students, and post doctoral researchers. For RSEs,
I can try University of Manchester RSDS, the University of Illinois NCSA, and
University of Notre Dame CRC; for PhD students, I can try asking university depart-
ments where I have a connection. I plan to ask questions in the following categories:

e SDP usage: Which SDPs do you use?

¢ Measures of maintainability: Is your code maintainable in this specific
way?

o Confounding variables: various other questions.

e SDP value: which SDP do you think is most valuable?

Pilot Survey

I plan to pilot this survey by asking people to complete it using a process identical
to the real one. After they complete it, I will explain my research goal, and I
will interview them afterwards. During this interview, I will ask closed- and
open-ended questions like:

¢ Did you understand the questions?

e Do you think they are all relevant to maintainability, SDP use, confounding
variables, or the research in general?

¢ Do you think that I missed a relevant question relevant to maintainability,
SDP use, confounding variables, or the research in general?

¢ What is your reasoning for your answer to SDP value?

I plan to leverage my professional connections and those of my advisors to find
people willing to talk to me about these subjects. I want to have five or ten of
these thirty-minute interviews before continuing.

I will use the responses in the pilot survey to revise the survey.

Source-code Mining

I will analyze the source-code question from the survey to evaluate quantitative
metrics in the following categories:

e SDP usage: Is this tool present in the source repository?

¢ Measures of maintainability: Evaluate quantitative metrics proposed
by prior literature on software code quality.

¢ Confounding variables: Various quantitative metrics relating to the size
and sort of software project.

Analysis

To answer RQ1, I will aggregate measures of maintainability in groups with
confounding variables constant, from the survey and from data mining.

To answer RQ2, I will create a factor analysis from SDP usage to a D-dimensional
space of latent “abstract maintainability” to measures of maintainability,
separately for each group with near-enough confounding variables. Ideally, D
will be 1 or else quite small. I can validate this by comparing my coefficients to the
respondent’s estimate of SDP value. This analysis is has (A+ B)CD parameters
to learn, where A is the number of SDP usage metrics, B is the number of measures of
maintainability, and C'is the number of equivalence classes of confounding variables.
Contrast this with a linear model without factoring would have ABC' parameters.

Finally, I will normalize value by SDP cost to find the “biggest bang for your buck.”

Threats to Validity

Content Validity

e The respondents in survey data could be biased in a particular direction,
perhaps to over-estimate their software’s maintainability and underestimate
the time it takes to make changes. Even seasoned engineers have trouble
estimating effort for changes.

— However, the mined metrics can balance out bias in the survey.
e The metrics I have collected might not capture all details of maintainability.

— However, I will read the literature and collect as much as I possibly
can. Even partially capturing maintainability can still be useful, if
that part is sufficient to capture the impact of tools on maintainability.

e The metrics might measure something other than maintainability.

— As long as most of the metrics do correlate with maintainability, the
statistical analysis will assign low coefficient to those metrics which
are less related to maintainability.

Internal Validity

o We cannot establish causation solely from correlation.

— However, use of SDP precedes the software and properties of the
software. Future work can try an “intervention experiment” which can
validate causality, once this study has narrowed down the candidates.

e Demographic factors could provide sources of confounding variance,
particularly in self-assessments.

— However, I can survey for basic demographic data (age, sex, experience),
and control for that.

e The factor model might be too simple to capture the nuanced interplay of
effects.

— I can add a metric which is the product of two other metrics to model
pair-wise interaction effects. If the main effects are significant by
themselves, then they are still useful without considering all possible
interaction effects.

External Validity

e There could be selection bias in those who choose to take part in the survey.

— This is my motivation for emailing individuals instead of posting the
URL in apublic place. This allows me to know how many people declined
to take the survey, which will allow me to establish bounds for the gener-
alizability of the study. I also plan to collect confounding variables, such
as years of experience, which will help me know if the sample is skewed.

e An intervention that introduces a SDP is a different from that in which the
developers chose that SDP. Perhaps the act of being told what to do reduces
the efficacy of the practice.

— Future work should do an intervention-study, to see if the results are
generalizable.

TODO: Too few data

Conclusion

I hope to identify classes of tools and activities which will positively impact
maintainability. Ideally, this will save time for the researchers who use them.

Future Work

In future work, one could execute an intervention experiment, where nascent soft-
ware projects are randomly divided into groups. For one group, the experimenter
could ask them to use certain classes of tools and activities, while the other receives
no specific advice. If they adopt the tool or activity on their own accord, they
would need to be shifted into the first group or ignored. Then, the experimenters
could have more causal evidence of a tool improving software quality.

In future work, one could embed oneself in academic software engineering teams
as Steve Easterbrook has (I intend to write a citation here).

In future work, one could examine automated metrics of software maintenance
and survey human opinions of software maintenance. It would be useful if some
metrics corresponded to human ground-truth. Then, one could look for tools and
practices which maximize the automated metrics, which may be more scalable
than asking in a survey if certain software is maintainable. However, one would
need to be careful in writing recommendations, as these may become gamed
rather than honestly sought (Goodhart’s Law).

In future work, one could deep-dive on individual practices. For example, one
might want to study details of code review: how many reviewers should review,
what proportion of commits should require review, is it better to have junior or
senior reviewers, etc.

https://en.wikipedia.org/wiki/Goodhart%27s_law

Broader impact

1. The survey responses and data mining results may or may not indicate
certain classes of tools or activities which correlate with maintainability.

2. T will investigate those classes of tools and activities more deeply, to learn

how one should introduce them to new users.

I will evangelize the results.

4. Some researchers will change their behavior to include these tools or
activities in their software development.

5. More research software will be correct and adaptable.

©w

Item 1 is this work, which may possibly fail and end the chain immediately. 2
will be future work, possibly after I graduate. 3 is an long-term push for culture
change by, for example, giving talks, that I hope will lead to 4 and 5.

Appendix

Software Development Practices

TODO: Define software tools and management activities. Software tools have
the advantage of automating checks that would be otherwise time-consuming.
Management activities require human input but still “automate” in some sense,
since the carrying out the activity algorithmically necessarily draws attention
to certain priorities.

Classes of Software Tools

o Formatters improve maintainability by automatically formatting your code,
making it easier to read, and producing smaller diffs. Examples include
black for Python, clang-fmt for C/C++.

e Linters improve maintainability by catching stylistic and surface-level
“typo” bugs. Examples include pylint for Python, shellcheck for shell,
clang-tidy for C/C++.

o Static analyzers improves maintainability by reasoning about user-code
and identifying errors. Examples include mypy for Python, clang-analyze
for C/C++.

o Sanitizers improve maintainability by running user-code with runtime-checks
enabled. Examples include memory sanitizer, valgrind for C/C++.

o Version control improves maintainability by naming each stable version
of code. It also enables continuous testing and feature branches. Examples
include git, mercurial, and CVS.

o Continuous testing improves maintainability by running exhaustive tests
and static analysis offline on each revision of the code. This can leverage
static analyzers as well. Examples include Jenkins, GitLab CI, Travis CI,
and GitHub Actions.

o Test frameworks improves maintainability by automating testing for
regressions. This can be combined with continuous testing.

e Inline documentation improves maintainability explaining how the code
works within the code. Some automated tools such as Javadoc, Doxygen,
and Sphinx can extract and reformat inline documentation into a more
readable form.

o Workflow management tools improve maintainability by making it easy
to reuse intermediate results while having a fallback for fresh systems.
Examples include Make, CMake, Bazel, and Popper.

o (Containerization tools improve maintainability by specifying the software
environment in which the code will run. Examples include Docker, Nix,
and gemu, and even some workflow managers such as Bazel and Popper.

Classes of Management Activities

o Test-driven development improves maintainability by encouraging devel-
opers write tests before writing code. This increases the use of tests, which
in turn make it easier to change software without breaking it.

o Workflow hooks improve maintainability by enforcing software tools at
certain stages in the workflow, such as git pre-commit hooks.

e (Code review improves maintainability by having the reviewer attempt to
reproduce the result. It also improves maintainability by keeping the code
quality high and spreading knowledge out across the team.

o Agile development and its variants seek to improve maintainability by
constantly re-evaluating the software’s requirements. TODO: Split Agile
up into individual activities.

e Feature branches improves maintainability by separating a stable working
state from experimentation. This can be used in combination with
continuous testing.

e« TODO: develop this section by adding more examples of activities that can
improve maintainability.

Survey Questions

e« SDP usage: For each project, for each SDP, did you use this SDP on this
project?

¢ Measure of maintainability: For each project, how long in hours would
it take you to run the code with some possible perturbation from raw data
to publication-ready graphs, excluding compute time?

— where the possible perturbation can be: no perturbation, a new dataset,
a new machine, a new kind of plot, a new dimension of input data, etc.

e SDP cost: For each activity, how much of your time as a percentage does
using tools or activities of this class require (increments of 10%)?

e SDP value: For each activity, how important is this SDP for maintainability
(on a Likert scale)?

« Confounding variable: What is your job title (categorical with “other”)?

¢ Confounding variable: What is your field of research (categorical with
“other”)?

¢ Confounding variable: How many years of experience do you have
writing research software?

e Source-code: For each project, if you are comfortable doing so, please
share the source code of this project.

Metrics Mined from Source-code

Measures of maintainability:

o For each language used, what is the cyclomatic complexity for code in that
language?

o For each language used, what are the Halstead complexity measures?

¢ How much code near-duplicated code exists in the project?

o How many inline literals are used (aka “magic constants”)?

e How much coupling is there within the project?

SDP use:

« Istherepository repeatable (single executable that runs works out-of-the-box
and exercises most of the code)?

— Software projects often have bespoke systems for reproducing their
project. To gather a large amount of data on reproducibility, I will
write a program which can recognize patterns such as the existence
of a Dockerfile, Makefile, or bazel BUILD file; whatever does not fit
this pattern I will have to analyze manually. Hopefully, I can turn each
exception into a new pattern that the program can handle next time.

o If so, what containerization/sandboxing tools does the repository employ?

o For each language used, what is the ratio of documentation to LoC in that
language?

e« How many items (e.g. methods, functions, classes) have structured
documentation (aka “doc blocks”)?

e Are there automated tests?

o If so, what is their coverage?

e Does the repository have continuous testing?

o If so, through what tool?

o If so, what commands are being tested?

— Classify by executables and subcommand (e.g. docker build, cargo
test)

Confounding variable:

¢ Statement count
¢ SLoC count
e Programming language

TODO: Consider adding version-control history-based metrics, e.g. those from
PluralSight.

TODO: Consider adding community-oriented metrics, e.g. those from CHAOSS.

Time Table

Date Task complete

Nov 15 Conduct informal interviews

Nov 15 Code and analyze informal interviews
Dec 15 Write survey questions

Dec 31 Apply for IRB approval

Dec 31 Ask administrators for approval

Jan 15 Identify software repositories to mine
Mar 1 Mine repositories

Feb 15 Mine citation counts

Mar 15 Mine other repositories for software usage
Mar 1 IRB approval

Mar 15 Deploy survey
Apr 1 Collect results of survey

Apr 15 Analyze data

May 1 Write manuscript

10

https://www.pluralsight.com/content/dam/pluralsight2/landing-pages/offers/flow/pdf/Pluralsight_20Patterns_ebook.pdf
https://chaoss.community/metrics/

Feedback

What works vs what doesn’t

A logic model is a graphic depiction (road map) that presents the shared

relationships among the resources, activities, outputs, outcomes, and impact
for your program. — https://www.cdc.gov/eval/logicmodels/index.htm

See the diagram on page 6 of https: //www.cdc.gov/dhdsp/docs/logic__model.pdf
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0020124

https://www.biorxiv.org/content/10.1101/050575v1.full.pdf

Meetings with client

Christian Collberg and Todd A. Proebsting. 2016. Repeatability in
computer systems research. Communications of the ACM 59, 62—69.
DOI:https://doi.org/10.1145 /2812803

Nasir U. Eisty and Jeffrey C. Carver. Developers Perception of Peer Code
Review in Research Software Development.

Simon Hettrick. A journey of reproducibility from Excel to Pandas.
Retrieved from https://www.software.ac.uk/blog/2017-09-06-journey-
reproducibility-excel-pandas

Simon Hettrick, Mario Antonioletti, Les Carr, Neil Chue Hong, Stephen
Crouch, David De Roure, Iain Emsley, Carole Goble, Alexander Hay,
Devasena Inupakutika, Mike Jackson, Aleksandra Nenadic, Tim Parkinson,
Mark I Parsons, Aleksandra Pawlik, Giacomo Peru, Arno Proeme, John
Robinson, and Shoaib Sufi. 2014. UK Research Software Survey 2014.
DOILhttps://doi.org/10.5281 /zenodo.14809

Jayanti Bhandari Neupane, Ram P. Neupane, Yuheng Luo, Wesley
Y. Yoshida, Rui Sun, and Phillip G. Williams. Characterization
of Leptazolines A-D, Polar Oxazolines from the Cyanobacterium
Leptolyngbya sp., Reveals a Glitch with the “Willoughby—Hoye”
Scripts for Calculating NMR Chemical Shifts. Organic Letters 21.
DOTL:https://doi.org/10.1021 /acs.orglett.9b03216

A. F. Rosene, J. E. Connolly, and K. M. Bracy. Software Maintainability
— What It Means and How to Achieve It. IEEFE Transactions on Reliability
R-30. DOL:https://doi.org/10.1109/TR.1981.5221065

Patrick Vandewalle, Jelena Kovacevic, and Martin Vetterli. IEEFE Singal
Processing Magazine 26. DOLhttps://doi.org/10.1109/MSP.2009.932122
Patrick H. Willoughby, Matthew J. Jansma, and Thomas R. Hoye.
A guide to small-molecule structure assignment through computa-
tion of (1H and 13C) NMR chemical shifts. Nature Protocols 9.
DOTI:https://doi.org/https://doi.org/10.1038 /nprot.2014.042

11

https://doi.org/10.1145/2812803
https://www.software.ac.uk/blog/2017-09-06-journey-reproducibility-excel-pandas
https://www.software.ac.uk/blog/2017-09-06-journey-reproducibility-excel-pandas
https://doi.org/10.5281/zenodo.14809
https://doi.org/10.1021/acs.orglett.9b03216
https://doi.org/10.1109/TR.1981.5221065
https://doi.org/10.1109/MSP.2009.932122
https://doi.org/10.1038/nprot.2014.042

	Changes from last time
	Introduction
	Research Questions
	Prior work

	Methods
	Survey
	Pilot Survey

	Source-code Mining

	Analysis
	Threats to Validity
	Content Validity
	Internal Validity
	External Validity

	Conclusion
	Future Work
	Broader impact

	Appendix
	Software Development Practices
	Classes of Software Tools
	Classes of Management Activities

	Survey Questions
	Metrics Mined from Source-code
	Time Table
	Feedback

