
Improving Software Engineering in Academia

Samuel Grayson

Related studies

Eisty and Carver [2] study “What is the effect of peer code review on research
software engineering? What are common positive and negative experiences? What
are difficulties and barriers? What improvements can be made?” They found its
practitioners believe that its effect is to improve code quality and facilitate knowl-
edge sharing. These effects are also “positive experiences.” Negative experiences
include review taking too long and developers misunderstanding the feedback.
Difficulties include the challenge of understanding the code, while barriers include
finding the time to do reviews. Potential improvements include formalizing
process, using more software tools, and funding more people to do reviews.

Collberg and Proebsting [1] study “How much of published computer systems
research in 2012 is repeatable?” The researchers found that roughly 2/3 had
source code, and of those, about 1/2 were repeatable out-of-the-box. The results
has been questioned in follow up work by Krishnamurthi [3] because perhaps
those tasked with reproducing were not knowledgeable enough.

Vandewalle et al. [5] study “Does releasing source code correlate with increased
citation-count for image processing in 2004?” The researchers found a correlation,
but leave causality to future work. About 1/10 of their samples had source code
in image processing journals in 2004; this is strikingly different from Collberg
[1], perhaps because the domain and time were different.

Murphy-Hill et al. [4] study “What makes software developers productive in
2019?” They found that the most important are: job enthusiasm, peer support
for new ideas, useful feedback about job performance.

Software Development Practices

• Peer code review: studied by [2]

1



Methods

Eisty and Carver [2] use survey to study how a process works, what are the
positives, and what are the negatives. They do a pilot study first. They never
directly assess efficacy of that process, just “do the practitioners find it important?”

Collberg [1] have undergraduate researchers attempt to repeat research exper-
iments. Krishnamurthi [3] shows that they may not be knowledgeable enough
and erroneously declare software not repeatable.

Vandewalle [5] uses citation count to measure research impact and searches for
source-code by hand.

Murphy-Hill [4] uses surveys to quantify environmental variables and self-
assessment to quantify productivity.
[1] Christian Collberg and Todd A. Proebsting. 2016. Repeatability in

computer systems research. Communications of the ACM 59, 62–69.
DOI:https://doi.org/10.1145/2812803

[2] Nasir U. Eisty and Jeffrey C. Carver. Developers Perception of Peer
Code Review in Research Software Development. Retrieved from
https://arxiv.org/abs/2109.10971

[3] Shriram Krishnamurthi. Examining “Reproducibility in Computer
Science.” Retrieved from http://cs.brown.edu/~sk/Memos/Examining-
Reproducibility/

[4] Emerson Murphy-Hill, Ciera Jaspan, Caitlin Sadowski, David Shep-
herd, Michael Phillips, Collin Winter, Andrea Knight, Edward
Smith, and Matthew Jorde. What Predicts Software Developers’
Productivity? IEEE Transactions on Software Engineering 47.
DOI:https://doi.org/10.1109/TSE.2019.2900308

[5] Patrick Vandewalle, Jelena Kovacevic, and Martin Vetterli. IEEE Singal
Processing Magazine 26. DOI:https://doi.org/10.1109/MSP.2009.932122

2

https://doi.org/10.1145/2812803
https://arxiv.org/abs/2109.10971
http://cs.brown.edu/~sk/Memos/Examining-Reproducibility/
http://cs.brown.edu/~sk/Memos/Examining-Reproducibility/
https://doi.org/10.1109/TSE.2019.2900308
https://doi.org/10.1109/MSP.2009.932122

	Related studies
	Software Development Practices
	Methods

