Skip to content
Snippets Groups Projects
user avatar
Aaron Staple authored
Add warnings to KMeans, GeneralizedLinearAlgorithm, and computeSVD when called with input data that is not cached. KMeans is implemented iteratively, and I believe that GeneralizedLinearAlgorithm’s current optimizers are iterative and its future optimizers are also likely to be iterative. RowMatrix’s computeSVD is iterative against an RDD when run in DistARPACK mode. ALS and DecisionTree are iterative as well, but they implement RDD caching internally so do not require a warning.

I added a warning to GeneralizedLinearAlgorithm rather than inside its optimizers, where the iteration actually occurs, because internally GeneralizedLinearAlgorithm maps its input data to an uncached RDD before passing it to an optimizer. (In other words, the warning would be printed for every GeneralizedLinearAlgorithm run, regardless of whether its input is cached, if the warning were in GradientDescent or other optimizer.) I assume that use of an uncached RDD by GeneralizedLinearAlgorithm is intentional, and that the mapping there (adding label, intercepts and scaling) is a lightweight operation. Arguably a user calling an optimizer such as GradientDescent will be knowledgable enough to cache their data without needing a log warning, so lack of a warning in the optimizers may be ok.

Some of the documentation examples making use of these iterative algorithms did not cache their training RDDs (while others did). I updated the examples to always cache. I also fixed some (unrelated) minor errors in the documentation examples.

Author: Aaron Staple <aaron.staple@gmail.com>

Closes #2347 from staple/SPARK-1484 and squashes the following commits:

bd49701 [Aaron Staple] Address review comments.
ab2d4a4 [Aaron Staple] Disable warnings on python code path.
a7a0f99 [Aaron Staple] Change code comments per review comments.
7cca1dc [Aaron Staple] Change warning message text.
c77e939 [Aaron Staple] [SPARK-1484][MLLIB] Warn when running an iterative algorithm on uncached data.
3b6c511 [Aaron Staple] Minor doc example fixes.
ff637c93
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.) More detailed documentation is available from the project site, at "Building Spark".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run all automated tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions. See also "Third Party Hadoop Distributions" for guidance on building a Spark application that works with a particular distribution.

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.