Skip to content
Snippets Groups Projects
user avatar
Matei Zaharia authored
I used the sbt-unidoc plugin (https://github.com/sbt/sbt-unidoc) to create a unified Scaladoc of our public packages, and generate Javadocs as well. One limitation is that I haven't found an easy way to exclude packages in the Javadoc; there is a SBT task that identifies Java sources to run javadoc on, but it's been very difficult to modify it from outside to change what is set in the unidoc package. Some SBT-savvy people should help with this. The Javadoc site also lacks package-level descriptions and things like that, so we may want to look into that. We may decide not to post these right now if it's too limited compared to the Scala one.

Example of the built doc site: http://people.csail.mit.edu/matei/spark-unified-docs/

Author: Matei Zaharia <matei@databricks.com>

This patch had conflicts when merged, resolved by
Committer: Patrick Wendell <pwendell@gmail.com>

Closes #457 from mateiz/better-docs and squashes the following commits:

a63d4a3 [Matei Zaharia] Skip Java/Scala API docs for Python package
5ea1f43 [Matei Zaharia] Fix links to Java classes in Java guide, fix some JS for scrolling to anchors on page load
f05abc0 [Matei Zaharia] Don't include java.lang package names
995e992 [Matei Zaharia] Skip internal packages and class names with $ in JavaDoc
a14a93c [Matei Zaharia] typo
76ce64d [Matei Zaharia] Add groups to Javadoc index page, and a first package-info.java
ed6f994 [Matei Zaharia] Generate JavaDoc as well, add titles, update doc site to use unified docs
acb993d [Matei Zaharia] Add Unidoc plugin for the projects we want Unidoced
fc783847
History

Apache Spark

Lightning-Fast Cluster Computing - http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project webpage at http://spark.apache.org/documentation.html. This README file only contains basic setup instructions.

Building Spark

Spark is built on Scala 2.10. To build Spark and its example programs, run:

./sbt/sbt assembly

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> <params>. For example:

./bin/run-example org.apache.spark.examples.SparkLR local[2]

will run the Logistic Regression example locally on 2 CPUs.

Each of the example programs prints usage help if no params are given.

All of the Spark samples take a <master> parameter that is the cluster URL to connect to. This can be a mesos:// or spark:// URL, or "local" to run locally with one thread, or "local[N]" to run locally with N threads.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./sbt/sbt test

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs. You can change the version by setting the SPARK_HADOOP_VERSION environment when building Spark.

For Apache Hadoop versions 1.x, Cloudera CDH MRv1, and other Hadoop versions without YARN, use:

# Apache Hadoop 1.2.1
$ SPARK_HADOOP_VERSION=1.2.1 sbt/sbt assembly

# Cloudera CDH 4.2.0 with MapReduce v1
$ SPARK_HADOOP_VERSION=2.0.0-mr1-cdh4.2.0 sbt/sbt assembly

For Apache Hadoop 2.2.X, 2.1.X, 2.0.X, 0.23.x, Cloudera CDH MRv2, and other Hadoop versions with YARN, also set SPARK_YARN=true:

# Apache Hadoop 2.0.5-alpha
$ SPARK_HADOOP_VERSION=2.0.5-alpha SPARK_YARN=true sbt/sbt assembly

# Cloudera CDH 4.2.0 with MapReduce v2
$ SPARK_HADOOP_VERSION=2.0.0-cdh4.2.0 SPARK_YARN=true sbt/sbt assembly

# Apache Hadoop 2.2.X and newer
$ SPARK_HADOOP_VERSION=2.2.0 SPARK_YARN=true sbt/sbt assembly

When developing a Spark application, specify the Hadoop version by adding the "hadoop-client" artifact to your project's dependencies. For example, if you're using Hadoop 1.2.1 and build your application using SBT, add this entry to libraryDependencies:

"org.apache.hadoop" % "hadoop-client" % "1.2.1"

If your project is built with Maven, add this to your POM file's <dependencies> section:

<dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-client</artifactId>
  <version>1.2.1</version>
</dependency>

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.

Contributing to Spark

Contributions via GitHub pull requests are gladly accepted from their original author. Along with any pull requests, please state that the contribution is your original work and that you license the work to the project under the project's open source license. Whether or not you state this explicitly, by submitting any copyrighted material via pull request, email, or other means you agree to license the material under the project's open source license and warrant that you have the legal authority to do so.