Skip to content
Snippets Groups Projects
user avatar
Nick Pentreath authored
So I finally resurrected this PR. It seems the old one against the incubator mirror is no longer available, so I cannot reference it.

This adds initial support for reading Hadoop ```SequenceFile```s, as well as arbitrary Hadoop ```InputFormat```s, in PySpark.

# Overview
The basics are as follows:
1. ```PythonRDD``` object contains the relevant methods, that are in turn invoked by ```SparkContext``` in PySpark
2. The SequenceFile or InputFormat is read on the Scala side and converted from ```Writable``` instances to the relevant Scala classes (in the case of primitives)
3. Pyrolite is used to serialize Java objects. If this fails, the fallback is ```toString```
4. ```PickleSerializer``` on the Python side deserializes.

This works "out the box" for simple ```Writable```s:
* ```Text```
* ```IntWritable```, ```DoubleWritable```, ```FloatWritable```
* ```NullWritable```
* ```BooleanWritable```
* ```BytesWritable```
* ```MapWritable```

It also works for simple, "struct-like" classes. Due to the way Pyrolite works, this requires that the classes satisfy the JavaBeans convenstions (i.e. with fields and a no-arg constructor and getters/setters). (Perhaps in future some sugar for case classes and reflection could be added).

I've tested it out with ```ESInputFormat```  as an example and it works very nicely:
```python
conf = {"es.resource" : "index/type" }
rdd = sc.newAPIHadoopRDD("org.elasticsearch.hadoop.mr.EsInputFormat", "org.apache.hadoop.io.NullWritable", "org.elasticsearch.hadoop.mr.LinkedMapWritable", conf=conf)
rdd.first()
```

I suspect for things like HBase/Cassandra it will be a bit trickier to get it to work out the box.

# Some things still outstanding:
1. ~~Requires ```msgpack-python``` and will fail without it. As originally discussed with Josh, add a ```as_strings``` argument that defaults to ```False```, that can be used if ```msgpack-python``` is not available~~
2. ~~I see from https://github.com/apache/spark/pull/363 that Pyrolite is being used there for SerDe between Scala and Python. @ahirreddy @mateiz what is the plan behind this - is Pyrolite preferred? It seems from a cursory glance that adapting the ```msgpack```-based SerDe here to use Pyrolite wouldn't be too hard~~
3. ~~Support the key and value "wrapper" that would allow a Scala/Java function to be plugged in that would transform whatever the key/value Writable class is into something that can be serialized (e.g. convert some custom Writable to a JavaBean or ```java.util.Map``` that can be easily serialized)~~
4. Support ```saveAsSequenceFile``` and ```saveAsHadoopFile``` etc. This would require SerDe in the reverse direction, that can be handled by Pyrolite. Will work on this as a separate PR

Author: Nick Pentreath <nick.pentreath@gmail.com>

Closes #455 from MLnick/pyspark-inputformats and squashes the following commits:

268df7e [Nick Pentreath] Documentation changes mer @pwendell comments
761269b [Nick Pentreath] Address @pwendell comments, simplify default writable conversions and remove registry.
4c972d8 [Nick Pentreath] Add license headers
d150431 [Nick Pentreath] Merge remote-tracking branch 'upstream/master' into pyspark-inputformats
cde6af9 [Nick Pentreath] Parameterize converter trait
5ebacfa [Nick Pentreath] Update docs for PySpark input formats
a985492 [Nick Pentreath] Move Converter examples to own package
365d0be [Nick Pentreath] Make classes private[python]. Add docs and @Experimental annotation to Converter interface.
eeb8205 [Nick Pentreath] Fix path relative to SPARK_HOME in tests
1eaa08b [Nick Pentreath] HBase -> Cassandra app name oversight
3f90c3e [Nick Pentreath] Merge remote-tracking branch 'upstream/master' into pyspark-inputformats
2c18513 [Nick Pentreath] Add examples for reading HBase and Cassandra InputFormats from Python
b65606f [Nick Pentreath] Add converter interface
5757f6e [Nick Pentreath] Default key/value classes for sequenceFile asre None
085b55f [Nick Pentreath] Move input format tests to tests.py and clean up docs
43eb728 [Nick Pentreath] PySpark InputFormats docs into programming guide
94beedc [Nick Pentreath] Clean up args in PythonRDD. Set key/value converter defaults to None for PySpark context.py methods
1a4a1d6 [Nick Pentreath] Address @mateiz style comments
01e0813 [Nick Pentreath] Merge remote-tracking branch 'upstream/master' into pyspark-inputformats
15a7d07 [Nick Pentreath] Remove default args for key/value classes. Arg names to camelCase
9fe6bd5 [Nick Pentreath] Merge remote-tracking branch 'upstream/master' into pyspark-inputformats
84fe8e3 [Nick Pentreath] Python programming guide space formatting
d0f52b6 [Nick Pentreath] Python programming guide
7caa73a [Nick Pentreath] Merge remote-tracking branch 'upstream/master' into pyspark-inputformats
93ef995 [Nick Pentreath] Add back context.py changes
9ef1896 [Nick Pentreath] Recover earlier changes lost in previous merge for serializers.py
077ecb2 [Nick Pentreath] Recover earlier changes lost in previous merge for context.py
5af4770 [Nick Pentreath] Merge branch 'master' into pyspark-inputformats
35b8e3a [Nick Pentreath] Another fix for test ordering
bef3afb [Nick Pentreath] Merge remote-tracking branch 'upstream/master' into pyspark-inputformats
e001b94 [Nick Pentreath] Fix test failures due to ordering
78978d9 [Nick Pentreath] Add doc for SequenceFile and InputFormat support to Python programming guide
64eb051 [Nick Pentreath] Scalastyle fix
e7552fa [Nick Pentreath] Merge branch 'master' into pyspark-inputformats
44f2857 [Nick Pentreath] Remove msgpack dependency and switch serialization to Pyrolite, plus some clean up and refactoring
c0ebfb6 [Nick Pentreath] Change sequencefile test data generator to easily be called from PySpark tests
1d7c17c [Nick Pentreath] Amend tests to auto-generate sequencefile data in temp dir
17a656b [Nick Pentreath] remove binary sequencefile for tests
f60959e [Nick Pentreath] Remove msgpack dependency and serializer from PySpark
450e0a2 [Nick Pentreath] Merge branch 'master' into pyspark-inputformats
31a2fff [Nick Pentreath] Scalastyle fixes
fc5099e [Nick Pentreath] Add Apache license headers
4e08983 [Nick Pentreath] Clean up docs for PySpark context methods
b20ec7e [Nick Pentreath] Clean up merge duplicate dependencies
951c117 [Nick Pentreath] Merge branch 'master' into pyspark-inputformats
f6aac55 [Nick Pentreath] Bring back msgpack
9d2256e [Nick Pentreath] Merge branch 'master' into pyspark-inputformats
1bbbfb0 [Nick Pentreath] Clean up SparkBuild from merge
a67dfad [Nick Pentreath] Clean up Msgpack serialization and registering
7237263 [Nick Pentreath] Add back msgpack serializer and hadoop file code lost during merging
25da1ca [Nick Pentreath] Add generator for nulls, bools, bytes and maps
65360d5 [Nick Pentreath] Adding test SequenceFiles
0c612e5 [Nick Pentreath] Merge branch 'master' into pyspark-inputformats
d72bf18 [Nick Pentreath] msgpack
dd57922 [Nick Pentreath] Merge remote-tracking branch 'upstream/master' into pyspark-inputformats
e67212a [Nick Pentreath] Add back msgpack dependency
f2d76a0 [Nick Pentreath] Merge branch 'master' into pyspark-inputformats
41856a5 [Nick Pentreath] Merge branch 'master' into pyspark-inputformats
97ef708 [Nick Pentreath] Remove old writeToStream
2beeedb [Nick Pentreath] Merge remote-tracking branch 'upstream/master' into pyspark-inputformats
795a763 [Nick Pentreath] Change name to WriteInputFormatTestDataGenerator. Cleanup some var names. Use SPARK_HOME in path for writing test sequencefile data.
174f520 [Nick Pentreath] Add back graphx settings
703ee65 [Nick Pentreath] Add back msgpack
619c0fa [Nick Pentreath] Merge remote-tracking branch 'upstream/master' into pyspark-inputformats
1c8efbc [Nick Pentreath] Merge remote-tracking branch 'upstream/master' into pyspark-inputformats
eb40036 [Nick Pentreath] Remove unused comment lines
4d7ef2e [Nick Pentreath] Fix indentation
f1d73e3 [Nick Pentreath] mergeConfs returns a copy rather than mutating one of the input arguments
0f5cd84 [Nick Pentreath] Remove unused pair UTF8 class. Add comments to msgpack deserializer
4294cbb [Nick Pentreath] Add old Hadoop api methods. Clean up and expand comments. Clean up argument names
818a1e6 [Nick Pentreath] Add seqencefile and Hadoop InputFormat support to PythonRDD
4e7c9e3 [Nick Pentreath] Merge remote-tracking branch 'upstream/master' into pyspark-inputformats
c304cc8 [Nick Pentreath] Adding supporting sequncefiles for tests. Cleaning up
4b0a43f [Nick Pentreath] Refactoring utils into own objects. Cleaning up old commented-out code
d86325f [Nick Pentreath] Initial WIP of PySpark support for SequenceFile and arbitrary Hadoop InputFormat
f971d6cb
History

Apache Spark

Lightning-Fast Cluster Computing - http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project webpage at http://spark.apache.org/documentation.html. This README file only contains basic setup instructions.

Building Spark

Spark is built on Scala 2.10. To build Spark and its example programs, run:

./sbt/sbt assembly

(You do not need to do this if you downloaded a pre-built package.)

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./sbt/sbt test

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs. You can change the version by setting the SPARK_HADOOP_VERSION environment when building Spark.

For Apache Hadoop versions 1.x, Cloudera CDH MRv1, and other Hadoop versions without YARN, use:

# Apache Hadoop 1.2.1
$ SPARK_HADOOP_VERSION=1.2.1 sbt/sbt assembly

# Cloudera CDH 4.2.0 with MapReduce v1
$ SPARK_HADOOP_VERSION=2.0.0-mr1-cdh4.2.0 sbt/sbt assembly

For Apache Hadoop 2.2.X, 2.1.X, 2.0.X, 0.23.x, Cloudera CDH MRv2, and other Hadoop versions with YARN, also set SPARK_YARN=true:

# Apache Hadoop 2.0.5-alpha
$ SPARK_HADOOP_VERSION=2.0.5-alpha SPARK_YARN=true sbt/sbt assembly

# Cloudera CDH 4.2.0 with MapReduce v2
$ SPARK_HADOOP_VERSION=2.0.0-cdh4.2.0 SPARK_YARN=true sbt/sbt assembly

# Apache Hadoop 2.2.X and newer
$ SPARK_HADOOP_VERSION=2.2.0 SPARK_YARN=true sbt/sbt assembly

When developing a Spark application, specify the Hadoop version by adding the "hadoop-client" artifact to your project's dependencies. For example, if you're using Hadoop 1.2.1 and build your application using SBT, add this entry to libraryDependencies:

"org.apache.hadoop" % "hadoop-client" % "1.2.1"

If your project is built with Maven, add this to your POM file's <dependencies> section:

<dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-client</artifactId>
  <version>1.2.1</version>
</dependency>

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.

Contributing to Spark

Contributions via GitHub pull requests are gladly accepted from their original author. Along with any pull requests, please state that the contribution is your original work and that you license the work to the project under the project's open source license. Whether or not you state this explicitly, by submitting any copyrighted material via pull request, email, or other means you agree to license the material under the project's open source license and warrant that you have the legal authority to do so.