Skip to content
Snippets Groups Projects
user avatar
Prashant Sharma authored
Let's give this another go using a version of Hive that shades its JLine dependency.

Author: Prashant Sharma <prashant.s@imaginea.com>
Author: Patrick Wendell <pwendell@gmail.com>

Closes #3159 from pwendell/scala-2.11-prashant and squashes the following commits:

e93aa3e [Patrick Wendell] Restoring -Phive-thriftserver profile and cleaning up build script.
f65d17d [Patrick Wendell] Fixing build issue due to merge conflict
a8c41eb [Patrick Wendell] Reverting dev/run-tests back to master state.
7a6eb18 [Patrick Wendell] Merge remote-tracking branch 'apache/master' into scala-2.11-prashant
583aa07 [Prashant Sharma] REVERT ME: removed hive thirftserver
3680e58 [Prashant Sharma] Revert "REVERT ME: Temporarily removing some Cli tests."
935fb47 [Prashant Sharma] Revert "Fixed by disabling a few tests temporarily."
925e90f [Prashant Sharma] Fixed by disabling a few tests temporarily.
2fffed3 [Prashant Sharma] Exclude groovy from sbt build, and also provide a way for such instances in future.
8bd4e40 [Prashant Sharma] Switched to gmaven plus, it fixes random failures observer with its predecessor gmaven.
5272ce5 [Prashant Sharma] SPARK_SCALA_VERSION related bugs.
2121071 [Patrick Wendell] Migrating version detection to PySpark
b1ed44d [Patrick Wendell] REVERT ME: Temporarily removing some Cli tests.
1743a73 [Patrick Wendell] Removing decimal test that doesn't work with Scala 2.11
f5cad4e [Patrick Wendell] Add Scala 2.11 docs
210d7e1 [Patrick Wendell] Revert "Testing new Hive version with shaded jline"
48518ce [Patrick Wendell] Remove association of Hive and Thriftserver profiles.
e9d0a06 [Patrick Wendell] Revert "Enable thritfserver for Scala 2.10 only"
67ec364 [Patrick Wendell] Guard building of thriftserver around Scala 2.10 check
8502c23 [Patrick Wendell] Enable thritfserver for Scala 2.10 only
e22b104 [Patrick Wendell] Small fix in pom file
ec402ab [Patrick Wendell] Various fixes
0be5a9d [Patrick Wendell] Testing new Hive version with shaded jline
4eaec65 [Prashant Sharma] Changed scripts to ignore target.
5167bea [Prashant Sharma] small correction
a4fcac6 [Prashant Sharma] Run against scala 2.11 on jenkins.
80285f4 [Prashant Sharma] MAven equivalent of setting spark.executor.extraClasspath during tests.
034b369 [Prashant Sharma] Setting test jars on executor classpath during tests from sbt.
d4874cb [Prashant Sharma] Fixed Python Runner suite. null check should be first case in scala 2.11.
6f50f13 [Prashant Sharma] Fixed build after rebasing with master. We should use ${scala.binary.version} instead of just 2.10
e56ca9d [Prashant Sharma] Print an error if build for 2.10 and 2.11 is spotted.
937c0b8 [Prashant Sharma] SCALA_VERSION -> SPARK_SCALA_VERSION
cb059b0 [Prashant Sharma] Code review
0476e5e [Prashant Sharma] Scala 2.11 support with repl and all build changes.
daaca14c
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.) More detailed documentation is available from the project site, at "Building Spark with Maven".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run all automated tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions. See also "Third Party Hadoop Distributions" for guidance on building a Spark application that works with a particular distribution.

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.