Skip to content
Snippets Groups Projects
user avatar
Felix Cheung authored
This PR has 2 key changes. One, we are building source package (aka bundle package) for SparkR which could be released on CRAN. Two, we should include in the official Spark binary distributions SparkR installed from this source package instead (which would have help/vignettes rds needed for those to work when the SparkR package is loaded in R, whereas earlier approach with devtools does not)

But, because of various differences in how R performs different tasks, this PR is a fair bit more complicated. More details below.

This PR also includes a few minor fixes.

These are the additional steps in make-distribution; please see [here](https://github.com/apache/spark/blob/master/R/CRAN_RELEASE.md

) on what's going to a CRAN release, which is now run during make-distribution.sh.
1. package needs to be installed because the first code block in vignettes is `library(SparkR)` without lib path
2. `R CMD build` will build vignettes (this process runs Spark/SparkR code and captures outputs into pdf documentation)
3. `R CMD check` on the source package will install package and build vignettes again (this time from source packaged) - this is a key step required to release R package on CRAN
 (will skip tests here but tests will need to pass for CRAN release process to success - ideally, during release signoff we should install from the R source package and run tests)
4. `R CMD Install` on the source package (this is the only way to generate doc/vignettes rds files correctly, not in step # 1)
 (the output of this step is what we package into Spark dist and sparkr.zip)

Alternatively,
   R CMD build should already be installing the package in a temp directory though it might just be finding this location and set it to lib.loc parameter; another approach is perhaps we could try calling `R CMD INSTALL --build pkg` instead.
 But in any case, despite installing the package multiple times this is relatively fast.
Building vignettes takes a while though.

Manually, CI.

Author: Felix Cheung <felixcheung_m@hotmail.com>

Closes #16014 from felixcheung/rdist.

(cherry picked from commit c3d3a9d0)
Signed-off-by: default avatarShivaram Venkataraman <shivaram@cs.berkeley.edu>
d69df907
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.)

You can build Spark using more than one thread by using the -T option with Maven, see "Parallel builds in Maven 3". More detailed documentation is available from the project site, at "Building Spark".

For general development tips, including info on developing Spark using an IDE, see http://spark.apache.org/developer-tools.html.

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.

## Contributing

Please review the Contribution to Spark guide for information on how to get started contributing to the project.