Skip to content
Snippets Groups Projects
user avatar
Nicholas Chammas authored
As described in [SPARK-2627](https://issues.apache.org/jira/browse/SPARK-2627), we'd like Python code to automatically be checked for PEP 8 compliance by Jenkins. This pull request aims to do that.

Notes:
* We may need to install [`pep8`](https://pypi.python.org/pypi/pep8) on the build server.
* I'm expecting tests to fail now that PEP 8 compliance is being checked as part of the build. I'm fine with cleaning up any remaining PEP 8 violations as part of this pull request.
* I did not understand why the RAT and scalastyle reports are saved to text files. I did the same for the PEP 8 check, but only so that the console output style can match those for the RAT and scalastyle checks. The PEP 8 report is removed right after the check is complete.
* Updates to the ["Contributing to Spark"](https://cwiki.apache.org/confluence/display/SPARK/Contributing+to+Spark) guide will be submitted elsewhere, as I don't believe that text is part of the Spark repo.

Author: Nicholas Chammas <nicholas.chammas@gmail.com>
Author: nchammas <nicholas.chammas@gmail.com>

Closes #1744 from nchammas/master and squashes the following commits:

274b238 [Nicholas Chammas] [SPARK-2627] [PySpark] minor indentation changes
983d963 [nchammas] Merge pull request #5 from apache/master
1db5314 [nchammas] Merge pull request #4 from apache/master
0e0245f [Nicholas Chammas] [SPARK-2627] undo erroneous whitespace fixes
bf30942 [Nicholas Chammas] [SPARK-2627] PEP8: comment spacing
6db9a44 [nchammas] Merge pull request #3 from apache/master
7b4750e [Nicholas Chammas] merge upstream changes
91b7584 [Nicholas Chammas] [SPARK-2627] undo unnecessary line breaks
44e3e56 [Nicholas Chammas] [SPARK-2627] use tox.ini to exclude files
b09fae2 [Nicholas Chammas] don't wrap comments unnecessarily
bfb9f9f [Nicholas Chammas] [SPARK-2627] keep up with the PEP 8 fixes
9da347f [nchammas] Merge pull request #2 from apache/master
aa5b4b5 [Nicholas Chammas] [SPARK-2627] follow Spark bash style for if blocks
d0a83b9 [Nicholas Chammas] [SPARK-2627] check that pep8 downloaded fine
dffb5dd [Nicholas Chammas] [SPARK-2627] download pep8 at runtime
a1ce7ae [Nicholas Chammas] [SPARK-2627] space out test report sections
21da538 [Nicholas Chammas] [SPARK-2627] it's PEP 8, not PEP8
6f4900b [Nicholas Chammas] [SPARK-2627] more misc PEP 8 fixes
fe57ed0 [Nicholas Chammas] removing merge conflict backups
9c01d4c [nchammas] Merge pull request #1 from apache/master
9a66cb0 [Nicholas Chammas] resolving merge conflicts
a31ccc4 [Nicholas Chammas] [SPARK-2627] miscellaneous PEP 8 fixes
beaa9ac [Nicholas Chammas] [SPARK-2627] fail check on non-zero status
723ed39 [Nicholas Chammas] always delete the report file
0541ebb [Nicholas Chammas] [SPARK-2627] call Python linter from run-tests
12440fa [Nicholas Chammas] [SPARK-2627] add Scala linter
61c07b9 [Nicholas Chammas] [SPARK-2627] add Python linter
75ad552 [Nicholas Chammas] make check output style consistent
d614967b
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLLib for machine learning, GraphX for graph processing, and Spark Streaming.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project webpage at http://spark.apache.org/documentation.html. This README file only contains basic setup instructions.

Building Spark

Spark is built on Scala 2.10. To build Spark and its example programs, run:

./sbt/sbt assembly

(You do not need to do this if you downloaded a pre-built package.)

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./sbt/sbt test

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs. You can change the version by setting -Dhadoop.version when building Spark.

For Apache Hadoop versions 1.x, Cloudera CDH MRv1, and other Hadoop versions without YARN, use:

# Apache Hadoop 1.2.1
$ sbt/sbt -Dhadoop.version=1.2.1 assembly

# Cloudera CDH 4.2.0 with MapReduce v1
$ sbt/sbt -Dhadoop.version=2.0.0-mr1-cdh4.2.0 assembly

For Apache Hadoop 2.2.X, 2.1.X, 2.0.X, 0.23.x, Cloudera CDH MRv2, and other Hadoop versions with YARN, also set -Pyarn:

# Apache Hadoop 2.0.5-alpha
$ sbt/sbt -Dhadoop.version=2.0.5-alpha -Pyarn assembly

# Cloudera CDH 4.2.0 with MapReduce v2
$ sbt/sbt -Dhadoop.version=2.0.0-cdh4.2.0 -Pyarn assembly

# Apache Hadoop 2.2.X and newer
$ sbt/sbt -Dhadoop.version=2.2.0 -Pyarn assembly

When developing a Spark application, specify the Hadoop version by adding the "hadoop-client" artifact to your project's dependencies. For example, if you're using Hadoop 1.2.1 and build your application using SBT, add this entry to libraryDependencies:

"org.apache.hadoop" % "hadoop-client" % "1.2.1"

If your project is built with Maven, add this to your POM file's <dependencies> section:

<dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-client</artifactId>
  <version>1.2.1</version>
</dependency>

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.

Contributing to Spark

Contributions via GitHub pull requests are gladly accepted from their original author. Along with any pull requests, please state that the contribution is your original work and that you license the work to the project under the project's open source license. Whether or not you state this explicitly, by submitting any copyrighted material via pull request, email, or other means you agree to license the material under the project's open source license and warrant that you have the legal authority to do so.