Skip to content
Snippets Groups Projects
user avatar
hyukjinkwon authored
[SPARK-20166][SQL] Use XXX for ISO 8601 timezone instead of ZZ (FastDateFormat specific) in CSV/JSON timeformat options

## What changes were proposed in this pull request?

This PR proposes to use `XXX` format instead of `ZZ`. `ZZ` seems a `FastDateFormat` specific.

`ZZ` supports "ISO 8601 extended format time zones" but it seems `FastDateFormat` specific option.
I misunderstood this is compatible format with `SimpleDateFormat` when this change is introduced.
Please see [SimpleDateFormat documentation]( https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#iso8601timezone) and [FastDateFormat documentation](https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/time/FastDateFormat.html).

It seems we better replace `ZZ` to `XXX` because they look using the same strategy - [FastDateParser.java#L930](https://github.com/apache/commons-lang/blob/8767cd4f1a6af07093c1e6c422dae8e574be7e5e/src/main/java/org/apache/commons/lang3/time/FastDateParser.java#L930), [FastDateParser.java#L932-L951 ](https://github.com/apache/commons-lang/blob/8767cd4f1a6af07093c1e6c422dae8e574be7e5e/src/main/java/org/apache/commons/lang3/time/FastDateParser.java#L932-L951) and [FastDateParser.java#L596-L601](https://github.com/apache/commons-lang/blob/8767cd4f1a6af07093c1e6c422dae8e574be7e5e/src/main/java/org/apache/commons/lang3/time/FastDateParser.java#L596-L601).

I also checked the codes and manually debugged it for sure. It seems both cases use the same pattern `( Z|(?:[+-]\\d{2}(?::)\\d{2}))`.

_Note that this should be rather a fix about documentation and not the behaviour change because `ZZ` seems invalid date format in `SimpleDateFormat` as documented in `DataFrameReader` and etc, and both `ZZ` and `XXX` look identically working with `FastDateFormat`_

Current documentation is as below:

```
   * <li>`timestampFormat` (default `yyyy-MM-dd'T'HH:mm:ss.SSSZZ`): sets the string that
   * indicates a timestamp format. Custom date formats follow the formats at
   * `java.text.SimpleDateFormat`. This applies to timestamp type.</li>
```

## How was this patch tested?

Existing tests should cover this. Also, manually tested as below (BTW, I don't think these are worth being added as tests within Spark):

**Parse**

```scala
scala> new java.text.SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSSXXX").parse("2017-03-21T00:00:00.000-11:00")
res4: java.util.Date = Tue Mar 21 20:00:00 KST 2017

scala>  new java.text.SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSSXXX").parse("2017-03-21T00:00:00.000Z")
res10: java.util.Date = Tue Mar 21 09:00:00 KST 2017

scala> new java.text.SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSSZZ").parse("2017-03-21T00:00:00.000-11:00")
java.text.ParseException: Unparseable date: "2017-03-21T00:00:00.000-11:00"
  at java.text.DateFormat.parse(DateFormat.java:366)
  ... 48 elided
scala>  new java.text.SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSSZZ").parse("2017-03-21T00:00:00.000Z")
java.text.ParseException: Unparseable date: "2017-03-21T00:00:00.000Z"
  at java.text.DateFormat.parse(DateFormat.java:366)
  ... 48 elided
```

```scala
scala> org.apache.commons.lang3.time.FastDateFormat.getInstance("yyyy-MM-dd'T'HH:mm:ss.SSSXXX").parse("2017-03-21T00:00:00.000-11:00")
res7: java.util.Date = Tue Mar 21 20:00:00 KST 2017

scala> org.apache.commons.lang3.time.FastDateFormat.getInstance("yyyy-MM-dd'T'HH:mm:ss.SSSXXX").parse("2017-03-21T00:00:00.000Z")
res1: java.util.Date = Tue Mar 21 09:00:00 KST 2017

scala> org.apache.commons.lang3.time.FastDateFormat.getInstance("yyyy-MM-dd'T'HH:mm:ss.SSSZZ").parse("2017-03-21T00:00:00.000-11:00")
res8: java.util.Date = Tue Mar 21 20:00:00 KST 2017

scala> org.apache.commons.lang3.time.FastDateFormat.getInstance("yyyy-MM-dd'T'HH:mm:ss.SSSZZ").parse("2017-03-21T00:00:00.000Z")
res2: java.util.Date = Tue Mar 21 09:00:00 KST 2017
```

**Format**

```scala
scala> new java.text.SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSSXXX").format(new java.text.SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSSXXX").parse("2017-03-21T00:00:00.000-11:00"))
res6: String = 2017-03-21T20:00:00.000+09:00
```

```scala
scala> val fd = org.apache.commons.lang3.time.FastDateFormat.getInstance("yyyy-MM-dd'T'HH:mm:ss.SSSZZ")
fd: org.apache.commons.lang3.time.FastDateFormat = FastDateFormat[yyyy-MM-dd'T'HH:mm:ss.SSSZZ,ko_KR,Asia/Seoul]

scala> fd.format(fd.parse("2017-03-21T00:00:00.000-11:00"))
res1: String = 2017-03-21T20:00:00.000+09:00

scala> val fd = org.apache.commons.lang3.time.FastDateFormat.getInstance("yyyy-MM-dd'T'HH:mm:ss.SSSXXX")
fd: org.apache.commons.lang3.time.FastDateFormat = FastDateFormat[yyyy-MM-dd'T'HH:mm:ss.SSSXXX,ko_KR,Asia/Seoul]

scala> fd.format(fd.parse("2017-03-21T00:00:00.000-11:00"))
res2: String = 2017-03-21T20:00:00.000+09:00
```

Author: hyukjinkwon <gurwls223@gmail.com>

Closes #17489 from HyukjinKwon/SPARK-20166.
cff11fd2
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.)

You can build Spark using more than one thread by using the -T option with Maven, see "Parallel builds in Maven 3". More detailed documentation is available from the project site, at "Building Spark".

For general development tips, including info on developing Spark using an IDE, see "Useful Developer Tools".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.

## Contributing

Please review the Contribution to Spark guide for information on how to get started contributing to the project.