Skip to content
Snippets Groups Projects
user avatar
Wenchen Fan authored
[SPARK-18360][SQL] default table path of tables in default database should depend on the location of default database

## What changes were proposed in this pull request?

The current semantic of the warehouse config:

1. it's a static config, which means you can't change it once your spark application is launched.
2. Once a database is created, its location won't change even the warehouse path config is changed.
3. default database is a special case, although its location is fixed, but the locations of tables created in it are not. If a Spark app starts with warehouse path B(while the location of default database is A), then users create a table `tbl` in default database, its location will be `B/tbl` instead of `A/tbl`. If uses change the warehouse path config to C, and create another table `tbl2`, its location will still be `B/tbl2` instead of `C/tbl2`.

rule 3 doesn't make sense and I think we made it by mistake, not intentionally. Data source tables don't follow rule 3 and treat default database like normal ones.

This PR fixes hive serde tables to make it consistent with data source tables.

## How was this patch tested?

HiveSparkSubmitSuite

Author: Wenchen Fan <wenchen@databricks.com>

Closes #15812 from cloud-fan/default-db.
ce13c267
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.)

You can build Spark using more than one thread by using the -T option with Maven, see "Parallel builds in Maven 3". More detailed documentation is available from the project site, at "Building Spark". For developing Spark using an IDE, see Eclipse and IntelliJ.

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.

## Contributing

Please review the Contribution to Spark wiki for information on how to get started contributing to the project.