Skip to content
Snippets Groups Projects
user avatar
Holden Karau authored
SPARK-1310: Start adding k-fold cross validation to MLLib [adds kFold to MLUtils & fixes bug in BernoulliSampler]

Author: Holden Karau <holden@pigscanfly.ca>

Closes #18 from holdenk/addkfoldcrossvalidation and squashes the following commits:

208db9b [Holden Karau] Fix a bad space
e84f2fc [Holden Karau] Fix the test, we should be looking at the second element instead
6ddbf05 [Holden Karau] swap training and validation order
7157ae9 [Holden Karau] CR feedback
90896c7 [Holden Karau] New line
150889c [Holden Karau] Fix up error messages in the MLUtilsSuite
2cb90b3 [Holden Karau] Fix the names in kFold
c702a96 [Holden Karau] Fix imports in MLUtils
e187e35 [Holden Karau] Move { up to same line as whenExecuting(random) in RandomSamplerSuite.scala
c5b723f [Holden Karau] clean up
7ebe4d5 [Holden Karau] CR feedback, remove unecessary learners (came back during merge mistake) and insert an empty line
bb5fa56 [Holden Karau] extra line sadness
163c5b1 [Holden Karau] code review feedback 1.to -> 1 to and folds -> numFolds
5a33f1d [Holden Karau] Code review follow up.
e8741a7 [Holden Karau] CR feedback
b78804e [Holden Karau] Remove cross validation [TODO in another pull request]
91eae64 [Holden Karau] Consolidate things in mlutils
264502a [Holden Karau] Add a test for the bug that was found with BernoulliSampler not copying the complement param
dd0b737 [Holden Karau] Wrap long lines (oops)
c0b7fa4 [Holden Karau] Switch FoldedRDD to use BernoulliSampler and PartitionwiseSampledRDD
08f8e4d [Holden Karau] Fix BernoulliSampler to respect complement
a751ec6 [Holden Karau] Add k-fold cross validation to MLLib
c3527a33
History

Apache Spark

Lightning-Fast Cluster Computing - http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project webpage at http://spark.apache.org/documentation.html. This README file only contains basic setup instructions.

Building

Spark requires Scala 2.10. The project is built using Simple Build Tool (SBT), which can be obtained here. If SBT is installed we will use the system version of sbt otherwise we will attempt to download it automatically. To build Spark and its example programs, run:

./sbt/sbt assembly

Once you've built Spark, the easiest way to start using it is the shell:

./bin/spark-shell

Or, for the Python API, the Python shell (./bin/pyspark).

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> <params>. For example:

./bin/run-example org.apache.spark.examples.SparkLR local[2]

will run the Logistic Regression example locally on 2 CPUs.

Each of the example programs prints usage help if no params are given.

All of the Spark samples take a <master> parameter that is the cluster URL to connect to. This can be a mesos:// or spark:// URL, or "local" to run locally with one thread, or "local[N]" to run locally with N threads.

Running tests

Testing first requires Building Spark. Once Spark is built, tests can be run using:

./sbt/sbt test

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs. You can change the version by setting the SPARK_HADOOP_VERSION environment when building Spark.

For Apache Hadoop versions 1.x, Cloudera CDH MRv1, and other Hadoop versions without YARN, use:

# Apache Hadoop 1.2.1
$ SPARK_HADOOP_VERSION=1.2.1 sbt/sbt assembly

# Cloudera CDH 4.2.0 with MapReduce v1
$ SPARK_HADOOP_VERSION=2.0.0-mr1-cdh4.2.0 sbt/sbt assembly

For Apache Hadoop 2.2.X, 2.1.X, 2.0.X, 0.23.x, Cloudera CDH MRv2, and other Hadoop versions with YARN, also set SPARK_YARN=true:

# Apache Hadoop 2.0.5-alpha
$ SPARK_HADOOP_VERSION=2.0.5-alpha SPARK_YARN=true sbt/sbt assembly

# Cloudera CDH 4.2.0 with MapReduce v2
$ SPARK_HADOOP_VERSION=2.0.0-cdh4.2.0 SPARK_YARN=true sbt/sbt assembly

# Apache Hadoop 2.2.X and newer
$ SPARK_HADOOP_VERSION=2.2.0 SPARK_YARN=true sbt/sbt assembly

When developing a Spark application, specify the Hadoop version by adding the "hadoop-client" artifact to your project's dependencies. For example, if you're using Hadoop 1.2.1 and build your application using SBT, add this entry to libraryDependencies:

"org.apache.hadoop" % "hadoop-client" % "1.2.1"

If your project is built with Maven, add this to your POM file's <dependencies> section:

<dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-client</artifactId>
  <version>1.2.1</version>
</dependency>

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.

Contributing to Spark

Contributions via GitHub pull requests are gladly accepted from their original author. Along with any pull requests, please state that the contribution is your original work and that you license the work to the project under the project's open source license. Whether or not you state this explicitly, by submitting any copyrighted material via pull request, email, or other means you agree to license the material under the project's open source license and warrant that you have the legal authority to do so.