Skip to content
Snippets Groups Projects
user avatar
Tarek Auel authored
Jira: https://issues.apache.org/jira/browse/SPARK-8235

I added the support for sha1. If I understood rxin correctly, sha and sha1 should execute the same algorithm, shouldn't they?

Please take a close look on the Python part. This is adopted from #6934

Author: Tarek Auel <tarek.auel@gmail.com>
Author: Tarek Auel <tarek.auel@googlemail.com>

Closes #6963 from tarekauel/SPARK-8235 and squashes the following commits:

f064563 [Tarek Auel] change to shaHex
7ce3cdc [Tarek Auel] rely on automatic cast
a1251d6 [Tarek Auel] Merge remote-tracking branch 'upstream/master' into SPARK-8235
68eb043 [Tarek Auel] added docstring
be5aff1 [Tarek Auel] improved error message
7336c96 [Tarek Auel] added type check
cf23a80 [Tarek Auel] simplified example
ebf75ef [Tarek Auel] [SPARK-8301] updated the python documentation. Removed sha in python and scala
6d6ff0d [Tarek Auel] [SPARK-8233] added docstring
ea191a9 [Tarek Auel] [SPARK-8233] fixed signatureof python function. Added expected type to misc
e3fd7c3 [Tarek Auel] SPARK[8235] added sha to the list of __all__
e5dad4e [Tarek Auel] SPARK[8235] sha / sha1
a5c2961c
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.) More detailed documentation is available from the project site, at "Building Spark".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions. See also "Third Party Hadoop Distributions" for guidance on building a Spark application that works with a particular distribution.

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.