Skip to content
Snippets Groups Projects
user avatar
Angus Gerry authored
## What changes were proposed in this pull request?
This pull request reverts the changes made as a part of #14605, which simply side-steps the deadlock issue. Instead, I propose the following approach:
* Use `scheduleWithFixedDelay` when calling `ExecutorAllocationManager.schedule` for scheduling executor requests. The intent of this is that if invocations are delayed beyond the default schedule interval on account of lock contention, then we avoid a situation where calls to `schedule` are made back-to-back, potentially releasing and then immediately reacquiring these locks - further exacerbating contention.
* Replace a number of calls to `askWithRetry` with `ask` inside of message handling code in `CoarseGrainedSchedulerBackend` and its ilk. This allows us queue messages with the relevant endpoints, release whatever locks we might be holding, and then block whilst awaiting the response. This change is made at the cost of being able to retry should sending the message fail, as retrying outside of the lock could easily cause race conditions if other conflicting messages have been sent whilst awaiting a response. I believe this to be the lesser of two evils, as in many cases these RPC calls are to process local components, and so failures are more likely to be deterministic, and timeouts are more likely to be caused by lock contention.

## How was this patch tested?
Existing tests, and manual tests under yarn-client mode.

Author: Angus Gerry <angolon@gmail.com>

Closes #14710 from angolon/SPARK-16533.
a0aac4b7
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.)

You can build Spark using more than one thread by using the -T option with Maven, see "Parallel builds in Maven 3". More detailed documentation is available from the project site, at "Building Spark". For developing Spark using an IDE, see Eclipse and IntelliJ.

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.