Skip to content
Snippets Groups Projects
user avatar
Michael Armbrust authored
This PR introduces a new set of APIs to Spark SQL to allow other developers to add support for reading data from new sources in `org.apache.spark.sql.sources`.

New sources must implement the interface `BaseRelation`, which is responsible for describing the schema of the data.  BaseRelations have three `Scan` subclasses, which are responsible for producing an RDD containing row objects.  The [various Scan interfaces](https://github.com/marmbrus/spark/blob/foreign/sql/core/src/main/scala/org/apache/spark/sql/sources/package.scala#L50) allow for optimizations such as column pruning and filter push down, when the underlying data source can handle these operations.

By implementing a class that inherits from RelationProvider these data sources can be accessed using using pure SQL.  I've used the functionality to update the JSON support so it can now be used in this way as follows:

```sql
CREATE TEMPORARY TABLE jsonTableSQL
USING org.apache.spark.sql.json
OPTIONS (
  path '/home/michael/data.json'
)
```

Further example usage can be found in the test cases: https://github.com/marmbrus/spark/tree/foreign/sql/core/src/test/scala/org/apache/spark/sql/sources

There is also a library that uses this new API to read avro data available here:
https://github.com/marmbrus/sql-avro

Author: Michael Armbrust <michael@databricks.com>

Closes #2475 from marmbrus/foreign and squashes the following commits:

1ed6010 [Michael Armbrust] Merge remote-tracking branch 'origin/master' into foreign
ab2c31f [Michael Armbrust] fix test
1d41bb5 [Michael Armbrust] unify argument names
5b47901 [Michael Armbrust] Remove sealed, more filter types
fab154a [Michael Armbrust] Merge remote-tracking branch 'origin/master' into foreign
e3e690e [Michael Armbrust] Add hook for extraStrategies
a70d602 [Michael Armbrust] Fix style, more tests, FilteredSuite => PrunedFilteredSuite
70da6d9 [Michael Armbrust] Modify API to ease binary compatibility and interop with Java
7d948ae [Michael Armbrust] Fix equality of AttributeReference.
5545491 [Michael Armbrust] Address comments
5031ac3 [Michael Armbrust] Merge remote-tracking branch 'origin/master' into foreign
22963ef [Michael Armbrust] package objects compile wierdly...
b069146 [Michael Armbrust] traits => abstract classes
34f836a [Michael Armbrust] Make @DeveloperApi
0d74bcf [Michael Armbrust] Add documention on object life cycle
3e06776 [Michael Armbrust] remove line wraps
de3b68c [Michael Armbrust] Remove empty file
360cb30 [Michael Armbrust] style and java api
2957875 [Michael Armbrust] add override
0fd3a07 [Michael Armbrust] Draft of data sources API
9c0eb57c
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.) More detailed documentation is available from the project site, at "Building Spark with Maven".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run all automated tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions. See also "Third Party Hadoop Distributions" for guidance on building a Spark application that works with a particular distribution.

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.