Skip to content
Snippets Groups Projects
user avatar
Josh Rosen authored
The query

```
SELECT 1 FROM (SELECT COUNT(*) WHERE FALSE) t1
```

should return a single row of output because the subquery is an aggregate without a group-by and thus should return a single row. However, Spark incorrectly returns zero rows.

This is caused by SPARK-16208 / #13906, a patch which added an optimizer rule to propagate EmptyRelation through operators. The logic for handling aggregates is wrong: it checks whether aggregate expressions are non-empty for deciding whether the output should be empty, whereas it should be checking grouping expressions instead:

An aggregate with non-empty grouping expression will return one output row per group. If the input to the grouped aggregate is empty then all groups will be empty and thus the output will be empty. It doesn't matter whether the aggregation output columns include aggregate expressions since that won't affect the number of output rows.

If the grouping expressions are empty, however, then the aggregate will always produce a single output row and thus we cannot propagate the EmptyRelation.

The current implementation is incorrect and also misses an optimization opportunity by not propagating EmptyRelation in the case where a grouped aggregate has aggregate expressions (in other words, `SELECT COUNT(*) from emptyRelation GROUP BY x` would _not_ be optimized to `EmptyRelation` in the old code, even though it safely could be).

This patch resolves this issue by modifying `PropagateEmptyRelation` to consider only the presence/absence of grouping expressions, not the aggregate functions themselves, when deciding whether to propagate EmptyRelation.

- Added end-to-end regression tests in `SQLQueryTest`'s `group-by.sql` file.
- Updated unit tests in `PropagateEmptyRelationSuite`.

Author: Josh Rosen <joshrosen@databricks.com>

Closes #17929 from JoshRosen/fix-PropagateEmptyRelation.

(cherry picked from commit a90c5cd8)
Signed-off-by: default avatarWenchen Fan <wenchen@databricks.com>
8e097890
History
Name Last commit Last update
..
catalyst
core
hive-thriftserver
hive
README.md

Spark SQL

This module provides support for executing relational queries expressed in either SQL or the DataFrame/Dataset API.

Spark SQL is broken up into four subprojects:

  • Catalyst (sql/catalyst) - An implementation-agnostic framework for manipulating trees of relational operators and expressions.
  • Execution (sql/core) - A query planner / execution engine for translating Catalyst's logical query plans into Spark RDDs. This component also includes a new public interface, SQLContext, that allows users to execute SQL or LINQ statements against existing RDDs and Parquet files.
  • Hive Support (sql/hive) - Includes an extension of SQLContext called HiveContext that allows users to write queries using a subset of HiveQL and access data from a Hive Metastore using Hive SerDes. There are also wrappers that allows users to run queries that include Hive UDFs, UDAFs, and UDTFs.
  • HiveServer and CLI support (sql/hive-thriftserver) - Includes support for the SQL CLI (bin/spark-sql) and a HiveServer2 (for JDBC/ODBC) compatible server.