Skip to content
Snippets Groups Projects
user avatar
Jason White authored
## What changes were proposed in this pull request?

Add handling of input of type `Int` for dataType `TimestampType` to `EvaluatePython.scala`. Py4J serializes ints smaller than MIN_INT or larger than MAX_INT to Long, which are handled correctly already, but values between MIN_INT and MAX_INT are serialized to Int.

These range limits correspond to roughly half an hour on either side of the epoch. As a result, PySpark doesn't allow TimestampType values to be created in this range.

Alternatives attempted: patching the `TimestampType.toInternal` function to cast return values to `long`, so Py4J would always serialize them to Scala Long. Python3 does not have a `long` type, so this approach failed on Python3.

## How was this patch tested?

Added a new PySpark-side test that fails without the change.

The contribution is my original work and I license the work to the project under the project’s open source license.

Resubmission of https://github.com/apache/spark/pull/16896

. The original PR didn't go through Jenkins and broke the build. davies dongjoon-hyun

cloud-fan Could you kick off a Jenkins run for me? It passed everything for me locally, but it's possible something has changed in the last few weeks.

Author: Jason White <jason.white@shopify.com>

Closes #17200 from JasonMWhite/SPARK-19561.

(cherry picked from commit 206030bd)
Signed-off-by: default avatarWenchen Fan <wenchen@databricks.com>
2a76e242
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page

Python Packaging

This README file only contains basic information related to pip installed PySpark. This packaging is currently experimental and may change in future versions (although we will do our best to keep compatibility). Using PySpark requires the Spark JARs, and if you are building this from source please see the builder instructions at "Building Spark".

The Python packaging for Spark is not intended to replace all of the other use cases. This Python packaged version of Spark is suitable for interacting with an existing cluster (be it Spark standalone, YARN, or Mesos) - but does not contain the tools required to setup your own standalone Spark cluster. You can download the full version of Spark from the Apache Spark downloads page.

NOTE: If you are using this with a Spark standalone cluster you must ensure that the version (including minor version) matches or you may experience odd errors.

Python Requirements

At its core PySpark depends on Py4J (currently version 0.10.4), but additional sub-packages have their own requirements (including numpy and pandas).