Skip to content
Snippets Groups Projects
user avatar
hyukjinkwon authored
[SPARK-19165][PYTHON][SQL] PySpark APIs using columns as arguments should validate input types for column

## What changes were proposed in this pull request?

While preparing to take over https://github.com/apache/spark/pull/16537, I realised a (I think) better approach to make the exception handling in one point.

This PR proposes to fix `_to_java_column` in `pyspark.sql.column`, which most of functions in `functions.py` and some other APIs use. This `_to_java_column` basically looks not working with other types than `pyspark.sql.column.Column` or string (`str` and `unicode`).

If this is not `Column`, then it calls `_create_column_from_name` which calls `functions.col` within JVM:

https://github.com/apache/spark/blob/42b9eda80e975d970c3e8da4047b318b83dd269f/sql/core/src/main/scala/org/apache/spark/sql/functions.scala#L76

And it looks we only have `String` one with `col`.

So, these should work:

```python
>>> from pyspark.sql.column import _to_java_column, Column
>>> _to_java_column("a")
JavaObject id=o28
>>> _to_java_column(u"a")
JavaObject id=o29
>>> _to_java_column(spark.range(1).id)
JavaObject id=o33
```

whereas these do not:

```python
>>> _to_java_column(1)
```
```
...
py4j.protocol.Py4JError: An error occurred while calling z:org.apache.spark.sql.functions.col. Trace:
py4j.Py4JException: Method col([class java.lang.Integer]) does not exist
    ...
```

```python
>>> _to_java_column([])
```
```
...
py4j.protocol.Py4JError: An error occurred while calling z:org.apache.spark.sql.functions.col. Trace:
py4j.Py4JException: Method col([class java.util.ArrayList]) does not exist
    ...
```

```python
>>> class A(): pass
>>> _to_java_column(A())
```
```
...
AttributeError: 'A' object has no attribute '_get_object_id'
```

Meaning most of functions using `_to_java_column` such as `udf` or `to_json` or some other APIs throw an exception as below:

```python
>>> from pyspark.sql.functions import udf
>>> udf(lambda x: x)(None)
```

```
...
py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.sql.functions.col.
: java.lang.NullPointerException
    ...
```

```python
>>> from pyspark.sql.functions import to_json
>>> to_json(None)
```

```
...
py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.sql.functions.col.
: java.lang.NullPointerException
    ...
```

**After this PR**:

```python
>>> from pyspark.sql.functions import udf
>>> udf(lambda x: x)(None)
...
```

```
TypeError: Invalid argument, not a string or column: None of type <type 'NoneType'>. For column literals, use 'lit', 'array', 'struct' or 'create_map' functions.
```

```python
>>> from pyspark.sql.functions import to_json
>>> to_json(None)
```

```
...
TypeError: Invalid argument, not a string or column: None of type <type 'NoneType'>. For column literals, use 'lit', 'array', 'struct' or 'create_map' functions.
```

## How was this patch tested?

Unit tests added in `python/pyspark/sql/tests.py` and manual tests.

Author: hyukjinkwon <gurwls223@gmail.com>
Author: zero323 <zero323@users.noreply.github.com>

Closes #19027 from HyukjinKwon/SPARK-19165.
dc5d34d8
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page

Python Packaging

This README file only contains basic information related to pip installed PySpark. This packaging is currently experimental and may change in future versions (although we will do our best to keep compatibility). Using PySpark requires the Spark JARs, and if you are building this from source please see the builder instructions at "Building Spark".

The Python packaging for Spark is not intended to replace all of the other use cases. This Python packaged version of Spark is suitable for interacting with an existing cluster (be it Spark standalone, YARN, or Mesos) - but does not contain the tools required to setup your own standalone Spark cluster. You can download the full version of Spark from the Apache Spark downloads page.

NOTE: If you are using this with a Spark standalone cluster you must ensure that the version (including minor version) matches or you may experience odd errors.

Python Requirements

At its core PySpark depends on Py4J (currently version 0.10.6), but additional sub-packages have their own requirements (including numpy and pandas).